2016届湖南省长沙市一中高三月考八文科数学试卷(带解析)

适用年级:高三
试卷号:631068

试卷类型:月考
试卷考试时间:2017/7/26

1.单选题(共10题)

1.
已知全集U=R,则正确表示集合M= {-1,0,1} 和N={ x |x+x=0} 关系的韦恩(Venn)图是( )
A.B.C.D.
2.
下列命题正确的是()
A.“”是“”的必要不充分条件
B.对于命题,使得,则,均有
C.若为假命题,则均为假命题
D.命题“若,则”的否命题为”若,则
3.
函数在区间上是减函数,则的取值范围是(  )
A.B.C.D.
4.
下列四个结论中,正确的个数有(  )
(1);(2);(3);(4)
A.1个B.2个C.3个D.4个
5.
已知,则函数的零点个数有(  )
A.1个B.2个C.3 个D.4个
6.
设函数上存在导数,对任意的,且,若  ,则实数的取值范围是(  )
A.B.C.D.
7.
如图,已知四边形是等腰梯形,是腰中点,两个三等分点,下底是上底2倍,若向量,向量,则向量表示为(  )
A.B.C.D.
8.
已知实数满足,则的最大值为(  )
A.-1B.0C.1D.3
9.
一个四面体的顶点在空间直角坐标系中的坐标分别是,画该四面体三视图中的正视图时,以平面为投影面,则得到的正视图可以为(  )
A.B.C.D.
10.
如图中,输入,则输出结果是(  )
A.74B.37C.101D.202

2.选择题(共3题)

11.
In choosing ________ career, you should first consider ________ type of work which will suit your interest
12.阅读《高速公路上的弯道》,回答下列问题。

高速公路上的弯道

    ①《诗经》里记载:“周道如砥,其直如矢”。这句话形容周代的路况非常好,就像磨刀石那样平整,像离弦之箭那样笔直。可见自古以来,人们就希望道路平坦笔直,觉得这样行驶车辆才能安全快捷。

    ②然而,现代许多国家修建高速公路时,对高速公路的直线路段长度加以限制,一般规定直线段跨段不超过设计时速的140﹣120.如一段高速公路的设计时速为每小时120公里,它的直线路段长度不能超过3公里﹣6公里。我国北京至天津塘沽高速公路全长152公里,弯道有33处之多,其中有十几处弯道是故意设置的。有些国外高速公路弯道设置更多,美国加州的一段200公里的高速公路,竟然有50多处弯道。

    ③研究表明,在过于平坦笔直的路面上高速行车极易发生车祸。首先,发动机的声调一成不变,驾驶员会因缺乏感官刺激逐渐产生精神疲劳,速度感和快速反应能力会大大减弱,在这种情况下极易发生交通事故。再者,从眼睛的视觉特性来看,如果汽车司机长时间地注视着无限远方,会产生一种视差,把近处的东西看成是远方的东西,医学上谓之“空虚近视”,对安全行车极为不利。同时从心理角度看,过于平坦笔直的道路,也会让人产生心里懈怠,诱发“飙车”欲望。你也许已注意到,车辆从高速公路下来都一律经过一段弯路,车辆缓慢地沿着弯道顺从而下,这段弯道就是对驾驶人员的安全引导,防止车辆下高速路后车速过快而诱发安全事故。

(选自《百科探索》2016年第11期,有删改)

13.

元杂剧作家中最负盛名的是关汉卿。其代表作是(    )

3.填空题(共3题)

14.
函数的图像向右平移个单位后,与函数的图像重合,则=___________.
15.
正方形的边长为1,把三角形沿对角线翻折,使得面后,有如下四个结论:(1);(2)是等边三角形;(3)四面体的表面积为.(4)四面体的内切球半径是,则正确结论的序号为_________.
16.
利用计算机模拟来估计未来三天中恰有两天下雨的概率过程如下:先产生0到9之间均匀整数随机数,用1、2、3、4表示下雨,用5、6、7、8、9、0表示不下雨,每三个随机数作为一组,共产生20组:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989,则三天中两天下雨概率是_________.

4.解答题(共5题)

17.
已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,试判断方程有几个实数根,并说明理由;
(3)若是自然对数的底)时,不等式恒成立,求实数的取值范围.
18.
设等比数列的前项和为,已知,且成等差数列.
(1)求数列的通项公式;
(2)设,求数列的前项和
19.
如图,空间几何体中,四边形是梯形,四边形是矩形,且平面平面是线段上的动点.

(1)试确定点的位置,使平面,并说明理由;
(2)在(1)的条件下,平面将几何体分成两部分,求空间几何体与空间几何体的体积之比;
20.
已知圆,圆
(1)过的直线截圆所得的弦长为,求该直线的斜率;
(2)动圆同时平分圆与圆的周长.
①求动圆圆心的轨迹方程;
②问动圆是否过定点,若经过,则求定点坐标;若不经过,则说明理由.
21.
某市抽样调查了100位居民的某年的月均用水量(单位:吨)数据如下表:

(1)某市若规定人均月用水量的标准是3吨,并希望85%以上的居民的用水量不超过此标准,请估计是否能达预期希望?
(2)请估计该样本数据的中位数.
(3)拟抽查上表中月均用水量在的6位居民中的2位进行调查,求恰好抽到一位在,另一位在的概率.
试卷分析
  • 【1】题量占比

    单选题:(10道)

    选择题:(3道)

    填空题:(3道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:18