海南省2018届高三上学期期末考试数学(理)试题

适用年级:高三
试卷号:626075

试卷类型:期末
试卷考试时间:2018/3/5

1.单选题(共10题)

1.
设集合,则(  )
A.B.C.D.
2.
函数的对称中心是(  )
A.B.C.D.
3.
已知,则它们的大小关系是(  )
A.B.C.D.
4.
过点作抛物线的两条切线,切点为,则的面积为(  )
A.B.C.D.
5.
某几何体的直观图如图所示,的直径,垂直所在的平面,且上从出发绕圆心逆时针方向运动的一动点.若设弧的长为的长度为关于的函数,则的图像大致为(  )

A.B.
C.D.
6.
《九章算术》中有这样一个问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,问若聘该女子做工半月(15日),一共能织布几尺(  )
A.75B.85C.105D.120
7.
如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为(  )
A.B.C.D.
8.
的展开式中含的项的系数为(  )
A.-1560B.-600C.600D.1560
9.
已知随机变量服从正态分布,且等于(  )
A.B.C.D.
10.
执行如图所示的程序框图,令,若,则实数a的取值范围是
A.B.
C.D.

2.填空题(共4题)

11.
若直线的倾斜角为,则__________.
12.
已知平面向量,则的夹角为__________.
13.
若实数满足不等式组,则的最小值为__________.
14.
已知点是直线上一动点,是圆的两条切线,为切点,若弦的长的最小值为,则的值为__________.

3.解答题(共5题)

15.
已知函数与函数的图像有两个不同的交点,且.
(1)求实数的取值范围;
(2)证明:.
16.
已知在中,角的对边分别为,且满足.
(1)若,求角
(2)求的最小值.
17.
设数列满足,且.
(1)求数列的通项公式;
(2)若表示不超过的最大整数,求的值.
18.
如图,是一个半圆柱与多面体构成的几何体,平面与半圆柱的下底面共面,且为弧上(不与重合)的动点.

(1)证明:平面
(2)若四边形为正方形,且,求二面角的余弦值.
19.
某中学举行了一次“环保知识竞赛”活动,为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据)

(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望
试卷分析
  • 【1】题量占比

    单选题:(10道)

    填空题:(4道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:19