1.单选题- (共11题)
2.
某住宅小区有居民2万户,从中随机抽取200户,调查是否安装电话,调查的结果如表所示,则该小区已安装电话的户数估计有( )
电话 | 动迁户 | 原住户 |
已安装 | 65 | 30 |
未安装 | 40 | 65 |
A.300户 | B.6500户 | C.9500户 | D.19000户 |
3.
(2015秋•友谊县校级期末)在一次试验中,测得(x,y)的四组值分别是A(1,1.5),B(2,3),C(3,4),D(4,5.5),则y与x之间的回归直线方程为( )
A.![]() | B.![]() | C.![]() | D.![]() |
6.
(2015秋•友谊县校级期末)一个工人看管三台机床,在一小时内,这三台机床需要工人照管的概率分别0.9、0.8、0.7,则没有一台机床需要工人照管的概率为( )
A.0.018 | B.0.016 | C.0.014 | D.0.006 |
7.
(2015秋•友谊县校级期末)为了纪念抗日战争胜利70周年,从甲、乙、丙等5名候选民警中选2名作为阅兵安保人员,为9月3号的阅兵提供安保服务,则甲、乙、丙三人中有2人被选中的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
2.选择题- (共1题)
3.填空题- (共3题)
4.解答题- (共5题)
16.
(2015•南海区校级模拟)某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(1)请补全频率分布直方图,并求n、a、p的值;
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.
组数 | 分组 | 低碳族 的人数 | 占本组 的频率 |
1 | [25,30) | 120 | 0.6 |
2 | [30,35) | 195 | P |
3 | [35,40) | 100 | 0.5 |
4 | [40,45) | a | 0.4 |
5 | [45,50) | 30 | 0.3 |
6 | [50,55) | 15 | 0.3 |
(1)请补全频率分布直方图,并求n、a、p的值;
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.

17.
(2015秋•友谊县校级期末)有A、B、C、D、E五位学生的数学成绩x与物理成绩y(单位:分)如下表:
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
=
x+
;
(2)若学生F的数学成绩为90分,试根据(1)求出的线性回归方程,预测其物理成绩(保留整数)
(参考数值:80×70+75×66+70×68+65×64+60×62=23190
=

.
x | 80 | 75 | 70 | 65 | 60 |
y | 70 | 66 | 68 | 64 | 62 |
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程



(2)若学生F的数学成绩为90分,试根据(1)求出的线性回归方程,预测其物理成绩(保留整数)
(参考数值:80×70+75×66+70×68+65×64+60×62=23190




19.
(2015•南昌校级二模)某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的结果如下:
(1)求表中a,b的值
(2)若以上表频率作为概率,且每天的销售量相互独立,
①求5天中该种商品恰有2天销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,X表示该种商品两天销售利润的和(单位:千元),求X的分布列和期望.
日销售量 | 1 | 1.5 | 2 |
频数 | 10 | 25 | 15 |
频率 | 0.2 | a | b |
(1)求表中a,b的值
(2)若以上表频率作为概率,且每天的销售量相互独立,
①求5天中该种商品恰有2天销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,X表示该种商品两天销售利润的和(单位:千元),求X的分布列和期望.
试卷分析
-
【1】题量占比
单选题:(11道)
选择题:(1道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19