1.单选题- (共5题)
1.
矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为( )


A.(3,1) | B.(3,![]() | C.(3,![]() | D.(3,2) |
2.
某中学要了解八年级学生的视力情况,在全校八年级中抽取了30名学生进行检测,在这个问题中,样本是( ).
A.八年级所有的学生 | B.被抽取的30名八年级学生 |
C.八年级所有的学生的视力情况 | D.被抽取的30名八年级学生的视力情况 |
5.
如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2
.以上结论中,你认为正确的有()个.

①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2


A.1 | B.2 | C.3 | D.4 |
2.选择题- (共1题)
3.填空题- (共5题)
10.
下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是_________________(将命题的序号填上即可)
4.解答题- (共5题)
12.
如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC,交BE的延长线于点F,连结C

A. (1)求证:AD=AF; (2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论. |

13.
如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=
AC,连接CE、OE,连接AE交OD于点F.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.

(1)求证:OE=CD;
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.

14.
如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、E
A.![]() (1)用t的代数式表示:AE= ;DF= ; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由; (3)当t为何值时,△DEF为直角三角形?请说明理由. |
15.
如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PE=PB,连接PD,O为AC中点.
(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,请说明理由;
(2)①如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;
②如图2,试用等式来表示PB,BC,CE之间的数量关系,并证明.
(3)如图3,把正方形ABCD改为菱形ABCD,其他条件不变,当
时,连接DE,试探究线段PB与线段DE的数量关系,并说明理由.
(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,请说明理由;
(2)①如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;
②如图2,试用等式来表示PB,BC,CE之间的数量关系,并证明.
(3)如图3,把正方形ABCD改为菱形ABCD,其他条件不变,当

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(1道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:3
7星难题:0
8星难题:0
9星难题:12