1.单选题- (共7题)
2.
用样本估计总体,下列说法正确的个数是( )
①样本的概率与实验次数有关;
②样本容量越大,估计就越精确;
③样本的标准差可以近似地反映总体的平均水平;
④数据的方差越大,说明数据越不稳定.
①样本的概率与实验次数有关;
②样本容量越大,估计就越精确;
③样本的标准差可以近似地反映总体的平均水平;
④数据的方差越大,说明数据越不稳定.
A.1 | B.2 | C.3 | D.4 |
4.
甲、乙两同学用茎叶图记录高三前5次数学测试的成绩,如图所示,他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了,若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为( )


A.0 | B.3 | C.6 | D.9 |
7.
某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共4题)
3.解答题- (共6题)
12.
已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E、F分别在棱AA′,CC′上,且AE=C′F=2.

(1) 求证:BB′⊥底面ABC;
(2)在棱A′B′上是否存在一点M,使得C′M∥平面BEF,若存在,求
值,若不存在,说明理由
(3)求棱锥
-BEF的体积

(1) 求证:BB′⊥底面ABC;
(2)在棱A′B′上是否存在一点M,使得C′M∥平面BEF,若存在,求

(3)求棱锥

13.
已知圆M的圆心M在x轴上,半径为1,直线
:y=
x-
被圆M所截的弦长为
,且圆心M在直线
的下方.
(1)求圆M的方程;
(2)设A(0,t),B(0,t+6)(-5≤t≤-2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.





(1)求圆M的方程;
(2)设A(0,t),B(0,t+6)(-5≤t≤-2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.
14.
一个盒子里装有三张卡片,分别标记有数字
,
,
,这三张卡片除标记的数字外完全相同.随机有放回地抽取
次,每次抽取
张,将抽取的卡片上的数字依次记为
,
,
.
(Ⅰ)求“抽取的卡片上的数字满足
”的概率;
(Ⅱ)求“抽取的卡片上的数字
,
,
不完全相同”的概率.








(Ⅰ)求“抽取的卡片上的数字满足

(Ⅱ)求“抽取的卡片上的数字



16.
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.

(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
17.
某市政府为了确定一个较为合理的居民用电标准,必须先了解全市居民日常用电量的分布情况.现采用抽样调查的方式,获得了n位居民在2012年的月均用电量(单位:度)数据,样本统计结果如下图表:

(1)求月均用电量的中位数与平均数估计值;
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.
分 组 | 频 数 | 频 率 |
[0, 10) | | 0.05 |
[10,20) | | 0.10 |
[20,30) | 30 | |
[30,40) | | 0.25 |
[40,50) | | 0.15 |
[50,60] | 15 | |
合 计 | n | 1 |

(1)求月均用电量的中位数与平均数估计值;
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.
试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17