湖北省大冶市六中2019-2020学年高二上学期第一次月考数学试题

适用年级:高二
试卷号:618305

试卷类型:月考
试卷考试时间:2019/10/12

1.单选题(共12题)

1.
若全集,集合,则为( )
A.B.C.D.
2.
是奇函数,则(  )
A.B.C.D.1
3.
已知函数为常数,且),若上的最小值为4,则实数的值为()
A.2B.C.D.
4.
若对任意的实数,不等式恒成立,则实数的最大值是(  )
A.4B.3C.2D.1
5.
中,角ABC所对的边分别为abc,若abc成等比数列,且,则(  )
A.B.C.D.
6.
函数的部分图象如图所示,则的解析式为()
A.
B.
C.
D.
7.
,夹角为,则等于(  )
A.37B.13C.D.
8.
已知数列满足,则().
A.9B.15C.18D.30
9.
已知数列的前项和为,则(  )
A.30B.31C.D.
10.
已知,则下列各式一定正确的是(  )
A.B.C.D.
11.
如图是一个几何体的三视图,根据图中数据,可得几何体的表面积是(  )
A.B.C.D.
12.
一个算法的程序框图如图,若该程序输出,则判断框内应填入的条件是(   )
A.B.C.D.

2.选择题(共2题)

13.

世界陆地最低点(    )

14.
History is full of cases_______dreams have been a pathway to creativity and discovery.

3.填空题(共3题)

15.
在三角形中,,则角等于______ .
16.
满足约束条件的最小值为
17.
均为正实数,且,则的最小值为

4.解答题(共6题)

18.
已知定义域为的函数是奇函数.
(Ⅰ)求实数mn的值;
(Ⅱ)若任意的,不等式恒成立,求实数a的取值范围.
19.
已知向量,函数
(1)若,求函数的值域;
​(2)当时,求的单调递增区间.
20.
中,内角ABC的对边分别为abc,且.
(1)求角的大小;
(2)若,求的值.
21.
已知数列为递增的等比数列,
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列的前项和
22.
已知各项均为正数的数列满足,且
(Ⅰ)求的值;
(Ⅱ)求证:是等差数列;
(Ⅲ)若,求数列的前项和.
23.
某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:
年份
1
2
3
4
5
维护费万元





 
求y关于t的线性回归方程;
若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.
参考公式:
试卷分析
  • 【1】题量占比

    单选题:(12道)

    选择题:(2道)

    填空题:(3道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:21