1.单选题- (共10题)
1.
为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如下图),已知从左到右各长方形高的比为
,则该班学生数学成绩在
之间的学生人数是( )




A.32 | B.27 | C.24 | D.33 |
3.
在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的
,且样本容量是160,则中间一组的频数为()

A.32 | B.0.2 | C.40 | D.0.25 |
4.
某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是( )
A.简单随机抽样 | B.系统抽样 |
C.分层抽样 | D.抽签法 |
5.
某企业三月中旬生产A,B,C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A,C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10件,根据以上信息,可得C产品的数量是( )
产品类别 | A | B | C |
产品数量(件) | | 1 300 | |
样本容量(件) | | 130 | |
A.900件 | B.800件 |
C.90件 | D.80件 |
6.
某市A,B,C三个区共有高中学生20000人,其中A区高中学生7 000人,现采用分层抽样的方法从这三个区所有高中学生中抽取一个容量为600的样本进行“学习兴趣”调查,则在A区应抽取( )
A.200人 | B.205人 |
C.210人 | D.215人 |
7.
对一个样本容量为100的数据分组,各组的频数如下:
估计小于29的数据大约占总体的( )
区间 | [17,19) | [19,21) | [21,23) | [23,25) | [25,27) | [27,29) | [29,31) | [31,33] |
频数 | 1 | 1 | 3 | 3 | 18 | 16 | 28 | 30 |
估计小于29的数据大约占总体的( )
A.42% | B.58% |
C.40% | D.16% |
8.
已知变量x和y满足关系y=0.1x-10,变量z与y负相关,则下列结论中正确的是
( )
( )
A.x与y负相关,x与z负相关 |
B.x与y正相关,x与z正相关 |
C.x与y正相关,x与z负相关 |
D.x与y负相关,x与z正相关 |
9.
如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是( )


A.161 cm | B.162 cm |
C.163 cm | D.164 cm |
10.
某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为 的学生.
A.37 | B.36 | C.35 | D.38 |
2.选择题- (共2题)
3.填空题- (共3题)
15.
设甲,乙两班某次考试的平均成绩分别为 x甲=106,x乙=107,又知
=6,
=14,则如下几种说法:
①乙班的数学成绩大大优于甲班;
②乙班数学成绩比甲班波动大;
③甲班的数学成绩较乙班稳定.
其中正确的是________.


①乙班的数学成绩大大优于甲班;
②乙班数学成绩比甲班波动大;
③甲班的数学成绩较乙班稳定.
其中正确的是________.
4.解答题- (共6题)
16.
某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.

(1)求居民月收入在[3000,3500)内的频率;
(2)根据频率分布直方图求出样本数据的中位数;
(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?

(1)求居民月收入在[3000,3500)内的频率;
(2)根据频率分布直方图求出样本数据的中位数;
(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?
17.
本小题满分12分)
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.
18.
农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下(单位:cm):
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21
(1)绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21
(1)绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
19.
某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:
(1)在这10天中,该公司用水量的平均数是多少?
(2)在这10天中,该公司每天用水量的中位数是多少?
(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?
天数 | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/吨 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(1)在这10天中,该公司用水量的平均数是多少?
(2)在这10天中,该公司每天用水量的中位数是多少?
(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?
20.
某个服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这些服装件数x之间有如下一组数据:
已知
=280,
yi=3 487,
(1)求
;
(2)求纯利y与每天销售件数x之间的回归直线方程;
(3)每天多销售1件,纯利y增加多少元?
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
已知


(1)求

(2)求纯利y与每天销售件数x之间的回归直线方程;
(3)每天多销售1件,纯利y增加多少元?
21.
某某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位:min).下面是这次抽样的频率分布表和频率分布直方图,解答下列问题:

(1)这次抽样的样本容量是多少?
(2)在表中填写缺失的数据并补全频率分布直方图.
(3)旅客购票用时的平均数可能落在哪一个小组?
(4)若每增加一个购票窗口可使平均购票用时缩短5 min,要使平均购票用时不超过10 min,那么你估计最少要增加几个窗口?
分组 | 频数 | 频率 | |
一组 | 0≤t<5 | 0 | 0 |
二组 | 5≤t<10 | 10 | |
三组 | 10≤t<15 | 10 | 0.10 |
四组 | 15≤t<20 | | |
五组 | 20≤t<25 | 30 | 0.30 |
合计 | 100 | 1.00 |

(1)这次抽样的样本容量是多少?
(2)在表中填写缺失的数据并补全频率分布直方图.
(3)旅客购票用时的平均数可能落在哪一个小组?
(4)若每增加一个购票窗口可使平均购票用时缩短5 min,要使平均购票用时不超过10 min,那么你估计最少要增加几个窗口?
试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(2道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19