1.单选题- (共3题)
2.
若等比数列
的公比为q,则关于
的二元一次方程组
的解的情况下列说法正确的是( )



A.对任意![]() | B.对任意![]() |
C.当且仅当![]() | D.当且仅当![]() |
2.选择题- (共3题)
3.填空题- (共13题)
10.
设函数
,其中
,若
、
、
是
的三条边长,则下列结论:①对于一切
都有
;②存在
使
、
、
不能构成一个三角形的三边长;③
为钝角三角形,存在
,使
,其中正确的个数为______个















A.3 | B.2 | C.1 | D.0 |
18.
甲与其四位朋友各有一辆私家车,甲的车牌尾数是0,其四位朋友的车牌尾数分别是0, 2, 1, 5,为遵守当地4月1日至5日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案总数为__________ .
4.解答题- (共5题)
20.
对于函数
,若在定义域内存在实数
,满足
,则称
为“
类函数”.
(1)已知函数
,试判断
是否为“
类函数”?并说明理由;
(2)设
是定义在
上的“
类函数”,求是实数
的最小值;
(3)若
为其定义域上的“
类函数”,求实数
的取值范围.





(1)已知函数



(2)设




(3)若




21.
某校兴趣小组在如图所示的矩形区域
内举行机器人拦截挑战赛,在
处按
方向释放机器人甲,同时在
处按某方向释放机器人乙,设机器人乙在
处成功拦截机器人甲.若点
在矩形区域
内(包含边界),则挑战成功,否则挑战失败.已知
米,
为
中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记
与
的夹角为
.

(1)若
,
足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到
);
(2)如何设计矩形区域
的宽
的长度,才能确保无论
的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域
内成功拦截机器人甲?














(1)若



(2)如何设计矩形区域




23.
在三棱锥
中,OA、OB、OC所在直线两两垂直,且
,CA与平面AOB所成角为
,D是AB中点,三棱锥
的体积是
.

(1)求三棱锥
的高;
(2)在线段CA上取一点E,当E在什么位置时,异面直线BE与OD所成的角为
?






(1)求三棱锥

(2)在线段CA上取一点E,当E在什么位置时,异面直线BE与OD所成的角为

试卷分析
-
【1】题量占比
单选题:(3道)
选择题:(3道)
填空题:(13道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21