2018年春高考数学(文)二轮专题复习训练:专题六 概率与统计、复数、算法

适用年级:高三
试卷号:613752

试卷类型:专题练习
试卷考试时间:2018/1/15

1.单选题(共9题)

1.
袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )
A.B.C.D.
2.
某科技研究所对一批新研发的产品长度进行检测(单位:),下图是检测结果的频率分布直方图,据此估计这批产品的中位数为( )
A.20B.22.5C.22.75D.25
3.
   一个班有50名学生,随机编为1~50号,为了解他们在课外的兴趣爱好,运用系统抽样法选出5名学生进行问卷调查,若有3名学生编号为6,26,36,则另2名学生编号分别为(  )
A.16,48B.18,48C.18,46D.16,46
4.
   已知xy之间的一组数据,则yx的线性回归方程x必过点(  )
x
0
1
2
3
y
1
2
4
5
 
A.(2,2)B.(1,2)C.(1.5,3)D.(1.5,0)
5.
某学校从高二甲、乙两个班中各选6名同掌参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的平均分为81,则x+y的值为( )
A.6B.7
C.8D.9
6.
   在2015年全国大学生运动会中,某主办校从含A的6名大学生中选配2名学生参加比赛,则学生A不被选配参加比赛的概率为(  )
A.B.C.D.
7.
随机抛掷一枚质地均匀的骰子,记正面向上的点数为,则函数有两个不同零点的概率为
A.B.C.D.
8.
某学校运动会的立定跳远和秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为名学生的预赛成绩,其中有三个数据模糊.
学生序号










立定跳远(单位:米)










30秒跳绳(单位:次)










 
在这名学生中,进入立定跳远决赛的有人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则
A.号学生进入秒跳绳决赛
B.号学生进入秒跳绳决赛
C.号学生进入秒跳绳决赛
D.号学生进入秒跳绳决赛
9.
某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是  ( )

A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个

2.填空题(共3题)

10.
   高三(2)班在一次数学考试中,对甲、乙两组各12名同学的成绩进行统计分析,两组成绩的茎叶图如图所示,成绩不少于90分为及格,现从两组成绩中按分层抽样抽取一个容量为6的样本,则不及格分数应抽________个.

11.
已知实数,执行如图所示的程序框图,则输出的x不小于103的概率是________.
12.
   甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且ab∈{0,1,2,…,9},则|ab|≤1的概率为__________.

3.解答题(共5题)

13.
   已知直线l1:3x-2y-1=0,直线l2axby+1=0,其中ab∈{1,2,3,4,5,6}.
(1)求直线l1l2≠∅的概率;
(2)求直线l1l2的交点位于第一象限的概率.
14.
为了解某地区某种产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:

(1)求关于的线性回归方程
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(保留两位小数)
参考公式:  ,
15.
某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.
(Ⅰ)若=19,求yx的函数解析式;
(Ⅱ)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;
(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
16.
   某校推广新课改,在两个程度接近的班进行试验,一班为新课改班级,二班为非课改班级,经过一个学期的教学后对期末考试进行分析评价,规定:总分超过550(或等于550分)为优秀,550以下为非优秀,得到以下列联表:
 
优秀
非优秀
合计
一班
35
13
 
二班
 
25
 
合计
 
 
90
 
(1)请完成上面的列联表;
(2)根据列联表的数据,能否在犯错误的概率不超过0.005的前提下认为推广新课改与数学成绩有关系?
参考数据:
P(K2k)
0.15
0.10
0.05
0.025
0.010
0.005
k
2.072
2.706
3.841
5.024
6.635
7.879
 
k2
17.
   高三理科某班有男同学30名,女同学15名,老师按照分层抽样的方法组建一个6人的课外兴趣小组.
(1)求课外兴趣小组中男、女同学各应抽取的人数;
(2)在一周的技能培训后从这6人中选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选1名同学做实验,求选出的两名同学中恰好仅有一名女同学的概率;
(3)实验结束后,第一次做实验的同学得到的实验数据为1.6、2、1.9、2.5、2,第二次做实验的同学得到的实验数据是2.1、1.8、1.9、2、2.2,请问哪位同学的实验更稳定?并说明理由.
试卷分析
  • 【1】题量占比

    单选题:(9道)

    填空题:(3道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:17