1.单选题- (共9题)
1.
下面关于函数的三种表示方法叙述错误的是( )
A.用图象法表示函数关系,可以直观地看出函数值如何随着自变量而变化 |
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与对应的函数值 |
C.用公式法表示函数关系,可以方便地计算函数值 |
D.任何函数关系都可以用上述三种方法来表示 |
3.
周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )


A.小丽从家到达公园共用时间20分钟 | B.公园离小丽家的距离为2000米 |
C.小丽在便利店时间为15分钟 | D.便利店离小丽家的距离为1000米 |
6.
如图,所有的四边形是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为13cm,则图中所有的正方形的面积之和为( )


A.169cm2 | B.196cm2 | C.338cm2 | D.507cm2 |
8.
下列不能判定一个四边形是平行四边形的是( )
A.两组对边分别平行的四边形是平行四边形 |
B.两组对边分别相等的四边形是平行四边形 |
C.一组对边平行另一组对边相等的四边形是平行四边形 |
D.对角线互相平分的四边形是平行四边形 |
9.
如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形……,如此操作下去,那么,第6个三角形的直角顶点坐标为( )


A.(﹣![]() ![]() | B.(﹣![]() ![]() | C.(﹣![]() ![]() | D.(﹣![]() ![]() |
2.填空题- (共5题)
12.
如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为( )


A.2 | B.3 | C.4 | D.5 |
3.解答题- (共6题)
15.
阅读理解:
把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数.
(1)请写出一个六位连接数 ,它 (填“能”或“不能”)被13整除.
(2)是否任意六位连接数,都能被13整除,请说明理由.
(3)若一个四位连接数记为M,它的各位数字之和的3倍记为N,M﹣N的结果能被13整除,这样的四位连接数有几个?
把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数.
(1)请写出一个六位连接数 ,它 (填“能”或“不能”)被13整除.
(2)是否任意六位连接数,都能被13整除,请说明理由.
(3)若一个四位连接数记为M,它的各位数字之和的3倍记为N,M﹣N的结果能被13整除,这样的四位连接数有几个?
16.
某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:
(1)求这两种货车各用多少辆;
(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;
(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.
车型 | 运费 | |
运往甲地/(元/辆) | 运往乙地/(元/辆) | |
大货车 | 720 | 800 |
小货车 | 500 | 650 |
(1)求这两种货车各用多少辆;
(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;
(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.
18.
为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于

A.已知AB=2.5km,CA=1.5km,DB=1.Okm,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等? |

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:4
7星难题:0
8星难题:1
9星难题:12