重庆市七校2018-2019学年高二下学期期末联考(理科)数学试题

适用年级:高二
试卷号:596057

试卷类型:期末
试卷考试时间:2020/2/18

1.单选题(共2题)

1.
下列说法中, 正确说法的个数是(   )
①在用列联表分析两个分类变量之间的关系时,随机变量的观测值越大,说明“AB有关系”的可信度越大
②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和 0.3
③已知两个变量具有线性相关关系,其回归直线方程为,若,则
A.0B.1C.2D.3
2.
湖北省2019年新高考方案公布,实行“”模式,即“3”是指语文、数学、外语必考,“1”是指物理、历史两科中选考一门,“2”是指生物、化学、地理、政治四科中选考两门,在所有选科组合中某学生选择考历史和化学的概率为(   )
A.B.C.D.

2.填空题(共1题)

3.
中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造. 算筹实际上是一根根同样长短的小木棍,用算筹表示数1~9的方法如图:例如:163可表示为“”,27可表示为“”.现有6根算筹,用来表示不能被10整除的两位数,算筹必须用完,则这样的两位数的个数为_________.

3.解答题(共4题)

4.
已知函数.
(1)解不等式
(2)若的最小值为,正实数满足,求的最小值.
5.
如图,直三棱柱中,的中点,点为线段上的一点.

(1)若,求证: ;
(2)若,异面直线所成的角为30°,求直线与平面所成角的正弦值.
6.
已知抛物线:的焦点为,准线为轴的交点为,点在抛物线上,过点于点,如图1.已知,且四边形的面积为.

(1)求抛物线的方程;
(2)若正方形的三个顶点都在抛物线上(如图2),求正方形面积的最小值.
7.
为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径
58
59
61
62
63
64
65
66
67
68
69
70
71
73
合计
件数
1
1
3
5
6
19
33
18
4
4
2
1
2
1
100
 
经计算,样本的平均值,标准差,以频率值作为概率的估计值,用样本估计总体.
(1)将直径小于等于或直径大于的零件认为是次品,从设备的生产流水线上随意抽取3个零件,计算其中次品个数的数学期望
(2)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级并说明理由.
试卷分析
  • 【1】题量占比

    单选题:(2道)

    填空题:(1道)

    解答题:(4道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:7