1.单选题- (共3题)
2.选择题- (共4题)
3.填空题- (共6题)
4.解答题- (共9题)
16.
从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
(1)求普通列车的行驶路程;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
17.
如图,一次函数y=kx+b与反比例函数y=
的图象交于点A(1,6),B(3,n)两点.
(1)求反比例函数和一次函数的表达式;
(2)点M是一次函数y=kx+b图象位于第一象限内的一点,过点M作MN⊥x轴,垂足为点N,过点B作BD⊥y轴,垂足为点D,若△MON的面积小于△BOD的面积,直接写出点M的横坐标x的取值范围.

(1)求反比例函数和一次函数的表达式;
(2)点M是一次函数y=kx+b图象位于第一象限内的一点,过点M作MN⊥x轴,垂足为点N,过点B作BD⊥y轴,垂足为点D,若△MON的面积小于△BOD的面积,直接写出点M的横坐标x的取值范围.

18.
平面直角坐标系xOy中,已知函数y1=
(x>0)与y2=﹣
(x<0)的图象如图所示,点A、B是函数y1=
(x>0)图象上的两点,点P是y2=﹣
(x<0)的图象上的一点,且AP∥x轴,点Q是x轴上一点,设点A、B的横坐标分别为m、n(m≠n).
(1)求△APQ的面积;
(2)若△APQ是等腰直角三角形,求点Q的坐标;
(3)若△OAB是以AB为底的等腰三角形,求mn的值.




(1)求△APQ的面积;
(2)若△APQ是等腰直角三角形,求点Q的坐标;
(3)若△OAB是以AB为底的等腰三角形,求mn的值.

19.
我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:

根据上述信息完成下列问题:
(1)求这次抽取的样本的容量;
(2)请在图②中把条形统计图补充完整;
(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?

根据上述信息完成下列问题:
(1)求这次抽取的样本的容量;
(2)请在图②中把条形统计图补充完整;
(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?
20.
如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.

(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.

(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.
21.
如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?

试卷分析
-
【1】题量占比
单选题:(3道)
选择题:(4道)
填空题:(6道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:3
7星难题:0
8星难题:1
9星难题:13