1.单选题- (共3题)
2.填空题- (共4题)
3.解答题- (共5题)
9.
如图,在直角梯形
中,
,
,
,直角梯形
可以通过直角梯形
以直线
为轴旋转得到,且平面
平面
.

(1)求证:
;
(2)设
、
分别为
、
的中点,
为线段
上的点(不与点
重合).
(i)若平面
平面
,求
的长;
(ii)线段
上是否存在
,使得直线
平面
,若存在求
的长,若不存在说明理由.










(1)求证:

(2)设







(i)若平面



(ii)线段





10.
在平面直角坐标系
中,
是椭圆
:
上的点,过点
的直线的方程为
.
(1)求椭圆
的离心率;
(2)当
时,
(i)设直线
与
轴、
轴分别相交于
,
两点,求
的最小值;
(ii)设椭圆
的左、右焦点分别为
,
,点
与点
关于直线
对称,求证:点
,
,
三点共线.






(1)求椭圆

(2)当

(i)设直线






(ii)设椭圆









11.
A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):
(Ⅰ)试估计C班的学生人数;
(Ⅱ)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(Ⅲ)再从A,B,C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为
,表格中数据的平均数记为
,试判断
和
的大小.(结论不要求证明)
A班 | 6 6.5 7 7.5 8 |
B班 | 6 7 8 9 10 11 12 |
C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
(Ⅰ)试估计C班的学生人数;
(Ⅱ)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(Ⅲ)再从A,B,C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为




试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:12