1.解答题- (共5题)
1.
设f(x)=ln x,g(x)=
x|x|.
(1)求g(x)在x=-1处的切线方程;
(2)令F(x)=x·f(x)-g(x),求F(x)的单调区间;
(3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求实数m的取值范围.

(1)求g(x)在x=-1处的切线方程;
(2)令F(x)=x·f(x)-g(x),求F(x)的单调区间;
(3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求实数m的取值范围.
3.
已知数列{an}满足an=2+2cos2
,n∈N*,等差数列{bn}满足a1=2b1,a2=b2.
(1)求bn;
(2)记cn=a2n-1b2n-1+a2nb2n,求cn;
(3)求数列{anbn}前2n项和S2n.

(1)求bn;
(2)记cn=a2n-1b2n-1+a2nb2n,求cn;
(3)求数列{anbn}前2n项和S2n.
4.
已知抛物线C:y2=4x和直线l:x=-1.
(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;
(2)过直线l上任一点P作抛物线的两条切线,切点记为A,B,求证:直线AB过定点.
(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;
(2)过直线l上任一点P作抛物线的两条切线,切点记为A,B,求证:直线AB过定点.
5.
某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.
(1)求出a,b的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学来自第5组的概率;
②求所抽取的2名同学来自同一组的概率.
组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0.16 |
第2组 | [60,70) | a | ■ |
第3组 | [70,80) | 20 | 0.40 |
第4组 | [80,90) | ■ | 0.08 |
第5组 | [90,100] | 2 | b |
合计 | | ■ | ■ |
(1)求出a,b的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学来自第5组的概率;
②求所抽取的2名同学来自同一组的概率.
试卷分析
-
【1】题量占比
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:5