1.单选题- (共11题)
5.
某工厂生产的零件外直径(单位:
)服从正态分布
,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为
和
,则可认为( )




A.上午生产情况异常,下午生产情况正常 |
B.上午生产情况正常,下午生产情况异常 |
C.上、下午生产情况均正常 |
D.上、下午生产情况均异常 |
7.
一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个,蓝球4个,绿球3个.现从盒子中随机取出两个球,记事件
为“取出的两个球颜色不同”,事件
为“取出一个黄球,一个绿球”,则



A.![]() | B.![]() |
C.![]() | D.![]() |
8.
甲、乙、丙、丁、戊五名同学参加某种技术竞赛,决出了第一名到第五名的五个名次,甲、乙去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军”;对乙说:“你当然不会是最差的”.从组织者的回答分析,这五个人的名次排列的不同情形种数共有( )
A.![]() | B.![]() | C.![]() | D.![]() |
11.
为了弘扬我国优秀传统文化,某中学广播站在春节、元宵节、清明节、端午节、中秋节五个中国传统节日中,随机选取两个节日来讲解其文化内涵,那么春节和端午节恰有一个被选中的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共4题)
3.解答题- (共6题)
19.
某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的演讲比赛活动.
(1)设所选3人中女生人数为
,求
的分布列;
(2)求男生甲或女生乙被选中的概率;
(3)设“男生甲被选中”为事件
,“女生乙被选中”为事件
,求
和
.
(1)设所选3人中女生人数为


(2)求男生甲或女生乙被选中的概率;
(3)设“男生甲被选中”为事件




21.
某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(1)求X的分布列;
(2)若要求
,确定n的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在
与
之中选其一,应选用哪个?

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(1)求X的分布列;
(2)若要求

(3)以购买易损零件所需费用的期望值为决策依据,在


试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21