1.选择题- (共1题)
2.单选题- (共9题)
2.
如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形。把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为多少cm
( )



A.124 | B.144 | C.110 | D.94 |
3.
如图,在平行四边形ABCD和平行四边形BEFG中,AB=AD,BG=BE,点A. B. E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则
=( )

A.
B.
C.


A.



A.![]() |
3.填空题- (共4题)
12.
如图,边长为1cm的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上。动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接O

A.则线段OE长度的最小值为______cm. |

14.
如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(−l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=
上,过点C作CE//x轴交双曲线于点E,连接BE,则△BCE的面积为________.


4.解答题- (共6题)
15.
图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在下图中分别画出符合要求的图形,所画图形各顶点必须在方格纸的格点上.

(1)在图(a)中画一个等腰三角形,使它的底边长是4,且面积是16;
(2)在图(b)中画一个等腰直角三角形,使它的面积是10;
(3)在图(c)中画一个四边形,使它既是轴对称又是中心对称图形,且面积是29.

(1)在图(a)中画一个等腰三角形,使它的底边长是4,且面积是16;
(2)在图(b)中画一个等腰直角三角形,使它的面积是10;
(3)在图(c)中画一个四边形,使它既是轴对称又是中心对称图形,且面积是29.
16.
在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套,设销售单价为x(x⩾60)元,销售量为y套.
(1)求出y与x的函数关系式;
(2)当销售单价为多少元时,且销售额为14000元?
(3)当销售单价为多少元时,才能在一个月内获得最大利润,最大利润是多少?
(1)求出y与x的函数关系式;
(2)当销售单价为多少元时,且销售额为14000元?
(3)当销售单价为多少元时,才能在一个月内获得最大利润,最大利润是多少?
17.
如图,抛物线
的对称轴为直线x=2,且抛物线经过A(−1,0),C(0,−5)两点,与x轴交于点B.
(1)若直线y=mx+n经过B. C两点,求直线BC和抛物线的解析式;
(2)设点P为抛物线上的一个动点,连接PB、PC,若△BPC是以BC为直角边的直角三角形,求此时点P的坐标;
(3)在抛物线上BC段有另一个动点Q,以点Q为圆心作Q,使得Q与直线BC相切,在运动的过程中是否存在一个最大Q?若存在,请直接写出最大Q的半径;若不存在,请说明理由.

(1)若直线y=mx+n经过B. C两点,求直线BC和抛物线的解析式;
(2)设点P为抛物线上的一个动点,连接PB、PC,若△BPC是以BC为直角边的直角三角形,求此时点P的坐标;
(3)在抛物线上BC段有另一个动点Q,以点Q为圆心作Q,使得Q与直线BC相切,在运动的过程中是否存在一个最大Q?若存在,请直接写出最大Q的半径;若不存在,请说明理由.

19.
在去年的创建全国文明城市活动中,抱着我为文明瑞安出一份力的想法,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A、顾客出面制止;B、劝说进吸烟室;C、餐厅老板出面制止;D、无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:

(1)这次抽样的公众有__________人;
(2)请将统计图①补充完整;
(3)在统计图②中,“无所谓”部分所对应的圆心角是多少度?
(4)若瑞安全市人口有120万人,估计赞成“餐厅老板出面制止”的有多少万人?

(1)这次抽样的公众有__________人;
(2)请将统计图①补充完整;
(3)在统计图②中,“无所谓”部分所对应的圆心角是多少度?
(4)若瑞安全市人口有120万人,估计赞成“餐厅老板出面制止”的有多少万人?
试卷分析
-
【1】题量占比
选择题:(1道)
单选题:(9道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:7
7星难题:0
8星难题:1
9星难题:11