1.单选题- (共4题)
3.
如图,Rt△ABC中,∠C=90°,E为AB中点,D为AC上一点,BF//AC交DE的延长线长于点F,AC=6,BC=5.则四边形FBCD周长的最小值是( )


A.21 | B.16 | C.17 | D.15 |
2.填空题- (共8题)
9.
如图,四边形ABCD中,AB⊥BC,AD⊥DC,∠BAD=m°(m>90),则BC、CD上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数是_______(用m来表示).

3.解答题- (共4题)
15.
如图,△ABC中,AB=5cm,BC=3cm,AC=4cm,若动点P从点C开始,按照C→A→B的路径运动,且运动速度为每秒2cm,设出发的时间为t秒.
(1)请判断△ABC的形状,说明理由
(2)当t为何值时,△BCP是以BC为腰的等腰三角形,求出t的值
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动,当t为何值时,P、Q两点之间的距离为
,直接写出t的值.
(1)请判断△ABC的形状,说明理由
(2)当t为何值时,△BCP是以BC为腰的等腰三角形,求出t的值
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动,当t为何值时,P、Q两点之间的距离为


16.
自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.
(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.
(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;
(3)如图3,在△ABC中,AB=BC=6,AC=8,请你画出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明EF为“等分积周线”的理由.
(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.
(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;
(3)如图3,在△ABC中,AB=BC=6,AC=8,请你画出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明EF为“等分积周线”的理由.

试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(8道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16