1.单选题- (共8题)
3.
a是不为2的有理数,我们把
称为a的“哈利数”.如:3的“哈利数”是
=-2,-2的“哈利数”是
,已知a1=5,a2是a1的“哈利数”,a3是a2的“哈利数”,
是
的“哈利数”,…,依此类推,则
等于( )






A.![]() | B.![]() | C.![]() | D.5 |
2.选择题- (共1题)
3.填空题- (共8题)
10.
已知在纸面上有一数轴,折叠纸面,数轴上-2表示的点与8表示的点重合.若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经以上方法折叠后重合,则A点表示的数是_______.
4.解答题- (共6题)
18.
阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.
例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;
又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.

知识运用:
⑴ 如图1,点B是(D,C)的好点吗? (填是或不是);
⑵ 如图2,A、B为数轴上两点,点A所表示的数为-40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?
例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;
又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.

知识运用:
⑴ 如图1,点B是(D,C)的好点吗? (填是或不是);
⑵ 如图2,A、B为数轴上两点,点A所表示的数为-40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?

20.
出租车司机小王某天下午营运全是在东西走向的太湖大道上进行的.如果向东记作“+”,向西记作“-”.他这天下午行车情况如下:(单位:千米)
-2,+5,-1,+10,-3,-2,-5,+6
请回答:
(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?
(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午共收到多少钱?
-2,+5,-1,+10,-3,-2,-5,+6
请回答:
(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?
(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午共收到多少钱?
21.
图1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的方法拼成一个边长为(m+n)的正方形.
⑴ 请用两种不同的方法求图2中阴影部分的面积.
方法1: ;方法2: ;
⑵ 观察图2写出
,
,
三个代数式之间的等量关系: ;
⑶ 根据⑵中你发现的等量关系,解决如下问题:若
,求
的值.
⑴ 请用两种不同的方法求图2中阴影部分的面积.
方法1: ;方法2: ;
⑵ 观察图2写出



⑶ 根据⑵中你发现的等量关系,解决如下问题:若



试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(1道)
填空题:(8道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:22