2012届江苏省扬州中学高三元月双周练习数学试卷

适用年级:高三
试卷号:536639

试卷类型:未知
试卷考试时间:2017/7/26

1.选择题(共8题)

1.

“执果索因”是下列哪种证明方法的特点(  )

2.

“执果索因”是下列哪种证明方法的特点(  )

3.

根据句意及首字母提示完成单词

(1){#blank#}1{#/blank#}(音乐家)can bring us beautiful music.

(2)His uncle, Mr.  Smith, was a great{#blank#}2{#/blank#}(作曲家).

(3)The man was very p{#blank#}3{#/blank#} ten years ago. But now he has lots of money.

(4)—Would you like a{#blank#}4{#/blank#} cake?  —No, thanks. I'm full(饱).

(5)People still think Mozart's works are p{#blank#}5{#/blank#}.

4.

I'm hungry. I want ______ bowl of noodles, please.

5.

I'm hungry. I want ______ bowl of noodles, please.

6.

I'm hungry. I want ______ bowl of noodles, please.

7.

I'm hungry. I want ______ bowl of noodles, please.

8.

完形填空

 Do you like playing the piano? Now there is a  1  in Sydney called “Play Me, I'm Yours”. People can 2  the piano in many places for free(免费). In addition to(除了……之外)letting people enjoy beautiful music, the programme  3  helps them communicate(交流)with each other better.

People have placed thirty pianos in  4  parts of the city. People can  5  the words “Play Me, I’m Yours” on each piano. People can play music  6  sing songs to the pianos. Many people stop to  7 or play happily.

Now lots of people are  8  in front of computers and busy with their work all day and they have no time to enjoy  9  . So the programme is to help them relax and make  10  friends.


2.填空题(共7题)

9.
已知命题,则__________.
10.
已知数列{an}的前n项和Sn=2n+n-1,则a1+a3    ▲   
11.
在平面直角坐标系x0y中,已知平面区域则平面区域的面积为_ __.
12.
已知正四棱柱的底面边长为2,高为3,则该正四棱柱的外接球的表面积为  ▲ 
13.
有一组样本数据8,x,10,11,9,已知它们的平均数为10,则这组数据的方差s2    ▲   
14.
一个正四面体的四个面分别涂有红、黄、蓝、白四种颜色,若随机投掷该四面体两次,则两次底面颜色相同的概率是    ▲   
15.
在如图所示的流程图中,输出的结果是    ▲   

3.解答题(共3题)

16.
因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放,且个单位的药剂,它在水中释放的浓度 (克/升)随着时间 (天)变化的函数关系式近似为,其中.
若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(1)若一次投放4个单位的药剂,则有效治污时间可达几天?
(2)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求的最小值.(精确到0.1,参考数据:取1.4)
17.
已知的三个内角所对的边分别为,向量,且
(1)求角; (2)若,求的值.
18.
(本小题满分16分)记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+,S3=12+
(1)求数列{an}的通项公式an及前n项和Sn
(2)记bn=an,若自然数n1,n2,…,nk,…满足1≤n1<n2<…<nk<…,并且,…,,…成等比数列,其中n1=1,n2=3,求nk(用k表示);
(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.
试卷分析
  • 【1】题量占比

    选择题:(8道)

    填空题:(7道)

    解答题:(3道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:10