1.单选题- (共3题)
1.
一列列车自全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x千米/时,则根据题意所列方程正确的是( )
A.
B.
C.
D. 
A.




3.
如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是


A.S1>S2 | B.S1=S2 | C.S1<S2 | D.3S1=2S2 |
2.选择题- (共7题)
7.小明发现超市里的手扶式电梯无人站在上面时运动较慢,有人站在上面时运动较快.他据此画出了如图所示的电路(R是一个压敏电阻).他分析:当人站在电梯上,R的阻值变小,电磁铁的磁性变{#blank#}1{#/blank#}(选填“强”或“弱”),衔铁与触点{#blank#}2{#/blank#}(选填“1”或“2“)接触,电动机的转速变快,电梯运行变快.
10.依次填入下面文段横线处的语句,衔接最恰当的一组是( )
我的眼前,是一片镶着露珠的绿茵茵的草滩,草滩上生长着一垄垄黄灿灿的油菜花。在这绿色和黄色的背后,______________________。
①那草滩的绿,绿得娇嫩。
②又衔接着一派无边无际的蓝色湖水。
③而那湖水的蓝,又是蓝得多么醉人啊。
④那菜花的黄,黄得蓬勃。
3.填空题- (共5题)
15.
某班课间活动抽查了20名学生每分钟跳绳次数,获得如下数据
单位:次
:50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90-110这一组的频率是______ .


4.解答题- (共7题)
18.
如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
⑴ 请在网格中建立平面直角坐标系, 使A点坐标为(2,4),B点坐标为(4,2);
⑵ 请在(1)中建立的平面直角坐标系的第一象限内的格点上确定点C, 使点C与线段AB组成一个以AB为底的等腰三角形, 且腰长是无理数, 则C点坐标是 , △ABC的周长是 (结果保留根号);
⑶ 以(2)中△ABC的点C为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.
⑴ 请在网格中建立平面直角坐标系, 使A点坐标为(2,4),B点坐标为(4,2);
⑵ 请在(1)中建立的平面直角坐标系的第一象限内的格点上确定点C, 使点C与线段AB组成一个以AB为底的等腰三角形, 且腰长是无理数, 则C点坐标是 , △ABC的周长是 (结果保留根号);
⑶ 以(2)中△ABC的点C为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.

19.
【背景】已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1,d2,d3,且d1=d3=1,d2=2.我们把四个顶点分别在l,m,n,k这四条平行线上的四边形称为“格线四边形” .
【探究1】(1)如图1,正方形ABCD为“格线四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F.求正方形ABCD的边长.
【探究2】(2)如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l,k于点G、点M.求证:EC=DF.
【拓展】(3)如图3,l∥k,等边△ABC的顶点A,B分别落在直线l,k上,AB⊥k于点B,且∠ACD=90°,直线CD分别交直线l、k于点G、点M,点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.
【探究1】(1)如图1,正方形ABCD为“格线四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F.求正方形ABCD的边长.
【探究2】(2)如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l,k于点G、点M.求证:EC=DF.
【拓展】(3)如图3,l∥k,等边△ABC的顶点A,B分别落在直线l,k上,AB⊥k于点B,且∠ACD=90°,直线CD分别交直线l、k于点G、点M,点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.

20.
如图一,菱形ABCD的边长为2,点E是AB的中点,且DE⊥AB.
(1)求证:△ABD是等边三角形;
(2)将图一中△ADE绕点D逆时针旋转,使得点A和点C重合,得到△CDF,连接BF,如图二,求线段BF的长.
(1)求证:△ABD是等边三角形;
(2)将图一中△ADE绕点D逆时针旋转,使得点A和点C重合,得到△CDF,连接BF,如图二,求线段BF的长.

试卷分析
-
【1】题量占比
单选题:(3道)
选择题:(7道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:6
7星难题:0
8星难题:0
9星难题:7