1.单选题- (共8题)
1.
如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
5.
如图,矩形ABCD中,AB=4,BC=3,动点E从B点出发,沿B﹣C﹣D﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数关系用图象表示正确的是( )


A.![]() | B.![]() | C.![]() | D.![]() |
8.
如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是( )


A.2 | B.3 | C.4 | D.5 |
2.填空题- (共3题)
10.
目前,某市正积极推进“五城联创”,其中扩充改造绿地是推进工作计划之一.现有一块直角三角形绿地,量得两直角边长分别为a=9m和b=12m,现要将此绿地扩充改造为等腰三角形,且扩充部分包含以b=12m为直角边的直角三角形,则扩充后等腰三角形的周长为___________.
11.
下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 .
| 甲 | 乙 | 丙 | 丁 |
平均数x(cm) | 175 | 173 | 175 | 174 |
方差S2(cm2) | 3.5 | 3.5 | 12.5 | 15 |
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 .
3.解答题- (共7题)
13.
如图,平面直角坐标系中,直线y=2x+m与y轴交于点A,与直线y=-x+5交于点B(4,n),P为直线y=-x+5上一点.

(1)求m,n的值;
(2)求线段AP的最小值,并求此时点P的坐标.

(1)求m,n的值;
(2)求线段AP的最小值,并求此时点P的坐标.
14.
甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(m)与时间x(h)的函数图象为线段OA,乙队铺设完的路面长y(m)与时间x(h)的函数图象为折线BC—CD—DE,如图所示,从甲队开始工作时计时.

(1)求乙队铺设完的路面长y(m)与时间x(h)的函数解析式;
(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?

(1)求乙队铺设完的路面长y(m)与时间x(h)的函数解析式;
(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?
16.
在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(3道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:8
7星难题:0
8星难题:3
9星难题:6