1.单选题- (共12题)
1.
如图,把含30°角的直角三角板的直角顶点C放在直线a上,其中∠A=30°,直角边AC和斜边AB分别与直线b相交,如果a∥b,且∠1=25°,则∠2的度数为( )


A.20° | B.25° | C.30° | D.35° |
2.填空题- (共5题)
3.解答题- (共8题)
19.
如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.
(1)当∠BDA=110°时,∠EDC= °,∠DEC= °;点D从B向C的运动过程中,∠BDA逐渐变 (填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由.
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.
(1)当∠BDA=110°时,∠EDC= °,∠DEC= °;点D从B向C的运动过程中,∠BDA逐渐变 (填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由.
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.

20.
如图,已知在△ABC中,△ABC的外角∠ABD的平分线与∠ACB的平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.
求证:(1)MO=MB;(2)MN=CN﹣BM.
求证:(1)MO=MB;(2)MN=CN﹣BM.

21.
如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.
(1)画出△ABC的AB边上的中线CD;

(2)画出△ABC向右平移4个单位后的△A1B1C1;
(3)图中AC与A1C1的关系是______;
(4)图中△ABC的面积是______.
(1)画出△ABC的AB边上的中线CD;

(2)画出△ABC向右平移4个单位后的△A1B1C1;
(3)图中AC与A1C1的关系是______;
(4)图中△ABC的面积是______.
22.
在△ABC中,BD,CE分别是∠ABC,∠ACB平分线,BD,CE相交于点P.
(1)如图1,如果∠A=60°,∠ACB=90°,则∠BPC= ;
(2)如图2,如果∠A=60°,∠ACB不是直角,请问在(1)中所得的结论是否仍然成立?若成立,请证明:若不成立,请说明理由.
(3)小月同学在完成(2)之后,发
现CD、BE、BC三者之间存在着一定的数量关系,于是她在边CB上截取了CF=CD,连接PF,可证△CDP≌△CFP,请你写出小月同学发现,并完成她的说理过程.
(1)如图1,如果∠A=60°,∠ACB=90°,则∠BPC= ;
(2)如图2,如果∠A=60°,∠ACB不是直角,请问在(1)中所得的结论是否仍然成立?若成立,请证明:若不成立,请说明理由.
(3)小月同学在完成(2)之后,发


试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(5道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:5
5星难题:0
6星难题:5
7星难题:0
8星难题:6
9星难题:9