1.单选题- (共4题)
3.
已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),对称轴为x=1,与y轴的交点B在(0,2)和(0,3)之间(包含这两个点)运动.有如下四个结论:①抛物线与x轴的另一个交点是(3,0);②点C(x1,y1),D(x2,y2)在抛物线上,且满足x1<x2<1,则y1>y2;③常数项c的取值范围是2≤c≤3;④系数a的取值范围是﹣1≤a≤﹣
.上述结论中,所有正确结论的序号是( )

A.①②③ | B.②③④ | C.①④ | D.①③④ |
2.选择题- (共2题)
3.填空题- (共4题)
4.解答题- (共8题)
12.
如图,点P是弧AB所对弦AB上一动点,过点P作PC⊥AB交AB于点P,作射线AC交弧AB于点D.已知AB=6cm,PC=1cm,设A,P两点间的距离为xcm,A,D两点间的距离为ycm.(当点P与点A重合时,y的值为0)

小平根据学习函数的经验,分别对函数y随自变量x的变化而变化的规律进行了探究.
下面是小平的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值;
经测量m的值是 (保留一位小数).
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y),并画出函数y的图象;

(3)结合函数图象,解决问题:当∠PAC=30°,AD的长度约为 cm.

小平根据学习函数的经验,分别对函数y随自变量x的变化而变化的规律进行了探究.
下面是小平的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 4.24 | 5.37 | m | 5.82 | 5.88 | 5.92 |
经测量m的值是 (保留一位小数).
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y),并画出函数y的图象;

(3)结合函数图象,解决问题:当∠PAC=30°,AD的长度约为 cm.
13.
二次函数y=ax2﹣2ax﹣3(a≠0)的图象经过点A.
(1)求二次函数的对称轴;
(2)当A(﹣1,0)时,
①求此时二次函数的表达式;
②把y=ax2﹣2ax﹣3化为y=a(x﹣h)2+k的形式,并写出顶点坐标;
③画出函数的图象.
(1)求二次函数的对称轴;
(2)当A(﹣1,0)时,
①求此时二次函数的表达式;
②把y=ax2﹣2ax﹣3化为y=a(x﹣h)2+k的形式,并写出顶点坐标;
③画出函数的图象.

14.
在平面直角坐标系xOy中,抛物线y=ax2+bx+3(a≠0)经过(1,0),且与y轴交于点C.
(1)直接写出点C的坐标 ;
(2)求a,b的数量关系;
(3)点D(t,3)是抛物线y=ax2+bx+3上一点(点D不与点C重合).
①当t=3时,求抛物线的表达式;
②当3<CD<4时,求a的取值范围.
(1)直接写出点C的坐标 ;
(2)求a,b的数量关系;
(3)点D(t,3)是抛物线y=ax2+bx+3上一点(点D不与点C重合).
①当t=3时,求抛物线的表达式;
②当3<CD<4时,求a的取值范围.

15.
如图,在平面直角坐标系xOy中,函数y=
(x>0)的图象经过点A,作AC⊥x轴于点C.
(1)求k的值;
(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.

(1)求k的值;
(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.

16.
已知:直线l和l外一点C.
求作:经过点C且垂直于l的直线.
作法:如图,
(1)在直线l上任取点A;
(2)以点C为圆心,AC为半径作圆,交直线l于点B;
(3)分别以点A,B为圆心,大于
的长为半径作弧,两弧相交于点D;
(4)作直线CD.
所以直线CD就是所求作的垂线.
(1)请使用直尺和圆规,补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:连接AC,BC,AD,BD.
∵AC=BC, = ,
∴CD⊥AB(依据: ).
求作:经过点C且垂直于l的直线.
作法:如图,
(1)在直线l上任取点A;
(2)以点C为圆心,AC为半径作圆,交直线l于点B;
(3)分别以点A,B为圆心,大于

(4)作直线CD.
所以直线CD就是所求作的垂线.
(1)请使用直尺和圆规,补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:连接AC,BC,AD,BD.
∵AC=BC, = ,
∴CD⊥AB(依据: ).

17.
如图,在△ABC中,∠BAC=90°,点D是BC中点,AE∥BC,CE∥AD.
(1)求证:四边形ADCE是菱形;
(2)过点D作DF⊥CE于点F,∠B=60°,AB=6,求EF的长.
(1)求证:四边形ADCE是菱形;
(2)过点D作DF⊥CE于点F,∠B=60°,AB=6,求EF的长.

试卷分析
-
【1】题量占比
单选题:(4道)
选择题:(2道)
填空题:(4道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:8
7星难题:0
8星难题:6
9星难题:2