1.单选题- (共7题)
3.
下列式子从左到右变形是因式分解的是( )
A.12xy2=3xy•4y | B.(x+1)(x+2)=x2﹣2x﹣3 |
C.x2﹣4x+1=x(x﹣4)+1 | D.x3﹣x=x(x+1)(x﹣1) |
4.
如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是( )

A. 点A B. 点B C. 点C D. 点D

A. 点A B. 点B C. 点C D. 点D
2.选择题- (共2题)
8.给划线字选择正确的读音。
无奈{#blank#}1{#/blank#}(A.nài B.ài)
胸脯{#blank#}2{#/blank#}(A.pú B.fú)
敝国{#blank#}3{#/blank#}(A.bǐ B.bì)
盗贼{#blank#}4{#/blank#}(A.zéi B.zié)
9.给划线字选择正确的读音。
无奈{#blank#}1{#/blank#}(A.nài B.ài)
胸脯{#blank#}2{#/blank#}(A.pú B.fú)
敝国{#blank#}3{#/blank#}(A.bǐ B.bì)
盗贼{#blank#}4{#/blank#}(A.zéi B.zié)
3.填空题- (共11题)
4.解答题- (共10题)
24.
阅读以下材料:
利用整式的乘法知识,我们可以证明以下有趣的结论:“将两个有理数的平方和与另两个有理数的平方和相乘,得到的乘积仍然可以表示成两个有理数的平方和”
设a,b,c,d为有理数,则
(a2+b2)(c2+d2)
=a2c2+a2d2+b2c2+b2d2
=(a2c2+2abcd+b2d2)+(a2d2﹣2abcd+b2c2)
=(ac+bd)2+(ad﹣bc)2
请你解决以下问题
(1)填空:(a2+b2)(c2+d2)=(ac﹣bd)2+( )2
(2)根据阅读材料,
130=13×10=(22+32)(12+32)=(2×1+3×3)2+(2×3﹣3×1)2=112+32
仿照这个过程将650写成两个正整数的平方和
(3)将20182018表示成两个正整数的平方和(直接写出一种答案即可).
利用整式的乘法知识,我们可以证明以下有趣的结论:“将两个有理数的平方和与另两个有理数的平方和相乘,得到的乘积仍然可以表示成两个有理数的平方和”
设a,b,c,d为有理数,则
(a2+b2)(c2+d2)
=a2c2+a2d2+b2c2+b2d2
=(a2c2+2abcd+b2d2)+(a2d2﹣2abcd+b2c2)
=(ac+bd)2+(ad﹣bc)2
请你解决以下问题
(1)填空:(a2+b2)(c2+d2)=(ac﹣bd)2+( )2
(2)根据阅读材料,
130=13×10=(22+32)(12+32)=(2×1+3×3)2+(2×3﹣3×1)2=112+32
仿照这个过程将650写成两个正整数的平方和
(3)将20182018表示成两个正整数的平方和(直接写出一种答案即可).
28.
如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.
(1)依题意补全图形;
(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);
(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.
(1)依题意补全图形;
(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);
(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.

29.
在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连结BD,CD,其中CD交直线AP与点E.
(1)如图1,若∠PAB=30°,则∠ACE= ;
(2)如图2,若60°<∠PAB<120°,请补全图形,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并说明理由.
(1)如图1,若∠PAB=30°,则∠ACE= ;
(2)如图2,若60°<∠PAB<120°,请补全图形,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并说明理由.

试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(2道)
填空题:(11道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:17
7星难题:0
8星难题:7
9星难题:4