刷题首页
题库
高中数学
题干
2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:
男生测试情况:
抽样情况
病残免试
不合格
合格
良好
优秀
人数
5
10
15
47
女生测试情况
抽样情况
病残免试
不合格
合格
良好
优秀
人数
2
3
10
2
(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;
(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?
男性
女性
总计
体育达人
非体育达人
总计
临界值表:
0.10
0.05
0.025
0.010
0.005
2.706
3.841
5.024
6.635
7.879
附:(
,其中
)
上一题
下一题
0.99难度 解答题 更新时间:2018-01-19 03:44:31
答案(点此获取答案解析)
同类题1
某大学高等数学这学期分别用
两种不同的数学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图. 学校规定:成绩不得低于85分的为优秀
(1)根据以上数据填写下列的
的列联表
甲
乙
总计
成绩优秀
成绩不优秀
总计
(2)是否有
的把握认为成绩优异与教学方式有关?”(计算保留三位有效数字)
下面临界值表仅供参考:
同类题2
某电视台制作了一套励志节目,内容是由一位知名人士讲述自己的故事,分享他们碎玉生活和生命的感悟,给予青年现实的讨论和心灵的滋养,同时也在讨论中国青年的社会问题,受到青年观众的喜爱.为了了解观众对节目的喜爱程度,电视台随机调查了
两个地区共100名观众,得到如下的
列联表:
已知在被调查的100名观众中随机抽取1名,该观众为“满意”的概率为0.35,且
.
(1)完成上述表格,并根据表格判断是否有
d 把握认为观众的满意度与所在地区有关系?
(2)现从被调查的100名观众中用分层抽样的方法抽取20名进行问卷调查,求抽取
地区“满意”的观众的人数各是多少?
(3)在(2)抽取的“满意”的观众中,随机选出2人进行座谈,求至多有1名是
地区观众的概率.
附:
,
0.050
0.010
0.001
3.841
6.635
10.828
同类题3
为了了解甲、乙两校学生自主招生通过情况,从甲校抽取60人,从乙校抽取50人进行分析。
(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;
(2)现已知甲校
三人在某大学自主招生中通过的概率分别为
,
,
,用随机变量
X
表示
三人在该大学自主招生中通过的人数,求
X
的分布列及期望
.
参考公式:
.
参考数据:
同类题4
为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了
名女性或
名男性,根据调研结果得到如图所示的等高条形图.
(1)完成下列
列联表:
喜欢旅游
不喜欢旅游
估计
女性
男性
合计
(2)能否在犯错误概率不超过
的前提下认为“喜欢旅游与性别有关”.
附:
参考公式:
,其中
同类题5
某种常见疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与地域、初次患该疾病的年龄(以下简称初次患病年龄)的关系,在甲、乙两个地区随机抽取100名患者调查其疾病类型及初次患病年龄,得到如下数据:
(1)从Ⅰ型疾病患者中随机抽取1人,估计其初次患病年龄小于40岁的概率;
(2)记“初次患病年龄在
的患者为“低龄患者”,初次患病年龄在
的患者为“高龄患者”,根据表中数据,解决以下问题:
将以下两个列联表补充完整,并判断“地域”“初次患病年龄”这两个变量中哪个变量与该疾病的类型有关联的可能性更大.(直接写出结论,不必说明理由)
(ii)记(i)中与该疾病的类型有关联的可能性更大的变量为
,问:是否有99.9%的把握认为“该疾病的类型与
有关?”
附:
相关知识点
计数原理与概率统计
统计案例
独立性检验
列联表