刷题首页
题库
高中数学
题干
变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).
表示变量Y与X之间的线性相关系数,
表示变量V与U之间的线性相关系数,则 ( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2011-06-16 10:49:20
答案(点此获取答案解析)
同类题1
某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:
).经统计,高度在区间
内,将其按
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图,其中高度不低于
的树苗为优质树苗.
附:
,其中
(1)求频率分布直方图中
的值;
(2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下
列联表所示,将列联表补充完整,并根据列联表判断是否有
%的把握认为优质树苗与地区有关?
甲地区
乙地区
合计
优质树苗
5
非优质树苗
25
合计
同类题2
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示.
(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;
(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为
,求
的分布列和数学期望.
同类题3
一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表:
温度x/℃
21
23
25
27
29
32
35
产卵个数y/个
7
11
21
24
66
115
325
(I)根据散点图判断,
与
哪一个适宜作为产卵数
关于温度
的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立
关于
的回归方程;
(Ⅲ)红铃虫是棉区危害较重的害虫,可从农业、物理和化学三个方面进行防治,其中农业方面防治有3种方法,物理方面防治有1种方法,化学方面防治3种方法,现从7种方法中选3种方法进行综合防治(即3种方法不能全部来自同一方面,至少来自两个方面),X表示在综合防治中农业方面的防治方法的种数,求X的分布列及数学期望E(X).
附:可能用到的公式及数据表中(表中
,
=
,
=
,
=
)
27.430
3.612
81.290
147.700
2763.764
705.592
40.180
对于一组数据
,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
,
同类题4
知
x
与
y
之间的一组数据:则
y
与
x
的线性回归方程
必过点( )
x
1
2
3
4
y
3
5
7
9
A.
B.
C.
D.
同类题5
2017年12月29日各大影院同时上映四部电影,下表是2018年I月4日这四部电影的猫眼评分
x
(分).和上座率
y
(%)的数据.
利用最小二乘法得到回归直线方程:
(四舍五人保留整数)
(I)请根据数据画残差图;(结果四舍五人保留整数)(
)
(II)根据(I)中得到的残差,求这个回归方程的拟合优度R
2
,并解释其意义.
(
)(结果保留两位小数)
相关知识点
计数原理与概率统计
统计