刷题首页
题库
高中数学
题干
二手车经销商小王对其所经营的
型号二手汽车的使用年数
与销售价格
(单位:万元/辆)进行整理,得到如下数据:
使用年数
售价
下面是
关于
的折线图:
(1)由折线图可以看出,可以用线性回归模型拟合
与
的关系,请用相关系数加以说明;
(2)求
关于
的回归方程并预测某辆
型号二手车当使用年数为
年时售价约为多少?(
、
小数点后保留两位有效数字)
(3)基于成本的考虑,该型号二手车的售价不得低于
元,请根据(2)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?
参考数据:
,
,
,
,
,
,
,
.
参考公式:回归直线方程
中斜率和截距的最小二乘估计公式分别为:
,
.
,
、
为样本平均值.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-04 10:09:21
答案(点此获取答案解析)
同类题1
已知具有相关关系的两个变量
之间的几组数据如下表所示:
2
4
6
8
10
3
6
7
10
12
(1)请根据上表数据在网格纸中绘制散点图;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
,并估计当
时,
的值.
参考公式:
,
.
同类题2
某车间为了给贫困山区的孩子们赶制一批爱心电子产品,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下表所示:
零件的个数
个
2
3
4
5
加工的时间
3
4
经统计发现零件个数
与加工时间
具有线性相关关系.
(1)求出
关于
的线性回归方程
;
(2)试预测加工10个零件需要多少时间.
利用公式:
,
同类题3
下表是
和
之间的一组数据,则
关于的回归方程必过( )
1
2
3
4
1
3
5
7
A.点
B.点
C.点
D.点
同类题4
某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:
年份
2012
2013
2014
2015
2016
2017
2018
投资金额
(万元)
年利润增长
(万元)
(1)请用最小二乘法求出
关于
的回归直线方程;如果2019年该公司计划对生产环节的改进的投资金额为
万元,估计该公司在该年的年利润增长为多少?(结果保留两位小数)
(2)现从2012年—2018年这
年中抽出三年进行调查,记
年利润增长
投资金额,设这三年中
(万元)的年份数为
,求随机变量
的分布列与期望.
参考公式:
.
参考数据:
,
.
相关知识点
计数原理与概率统计
统计
变量间的相关关系
最小二乘法
求回归直线方程