刷题首页
题库
高中数学
题干
设
,随机变量
的分布列如下:
则当
在
内增大时( )
A.
减小,
减小
B.
增大,
增大
C.
增大,
减小
D.
减小,
增大
上一题
下一题
0.99难度 单选题 更新时间:2019-10-25 08:12:45
答案(点此获取答案解析)
同类题1
已知正方形
的边长为
,
、
、
、
分别是边
、
、
、
的中点.
(1)在正方形
内部随机取一点
,求满足
的概率;
(2)从
、
、
、
、
、
、
、
这八个点中,随机选取两个点,记这两个点之间的距离的平方为
,求随机变量
的分布列与数学期望
.
同类题2
学校在高二年级开设了
共4门不同的选修课,每个学生必须从中任选一门.已知高二的3名学生甲、乙、丙对这4门选修课的兴趣相同(即选这四门课是等可能的);
(1)求甲、乙、丙三人选择的选修课都不相同的概率;
(2)求恰有2门选修课甲、乙、丙都没有选择的概率;
(3)设随机变量
为甲、乙、丙三人中选修
这门课的人数,求
的分布列和数学期望.
同类题3
某人上楼梯,每步上一阶的概率为
,每步上二阶的概率为
,设该人从台阶下的平台开始出发,到达第
n
阶的概率为
.
(Ⅰ)求
;(Ⅱ)该人共走了5步,求该人这5步共上的阶数ξ的数学期望.
同类题4
由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.
(1)若甲解开密码锁所需时间的中位数为47,求
a
、
b
的值,并分别求出甲、乙在1分钟内解开密码锁的频率;
(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.
①求该团队能进入下一关的概率;
②该团队以怎样的先后顺序派出人员,可使所需派出的人员数目
X
的数学期望达到最小,并说明理由.
同类题5
甲、乙两人同时参加一个外贸公司的招聘,招聘分笔试与面试两部分,先笔试后面试
.
甲笔试与面试通过的概率分别为0
.
8,0
.
5,乙笔试与面试通过的概率分别为0
.
8,0
.
4,且笔试通过了才能进入面试,面试通过则直接招聘录用,两人笔试与面试相互独立互不影响
.
(1)求这两人至少有一人通过笔试的概率;
(2)求这两人笔试都通过却都未被录用的概率;
(3)记这两人中最终被录用的人数为
X
,求
X
的分布列和数学期望
.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量的均值与方差
离散型随机变量的均值
求离散型随机变量的均值
离散型随机变量的方差与标准差