随着通识教育理念的推广及高校课程改革的深入,选修课越来越受到人们的重视.国内一些知名院校在公共选修课的设置方面做了许多有益的探索,并且取得了一定的成果.因为选修课的课程建设处于探索阶段,选修课的教学、管理还存在很多的问题,所以需要在通识教育的基础上制定科学的、可行的解决方案,为学校选修课程的改革与创新、课程设置、考试考核、人才培养提供参考.某高校采用分层抽样法抽取了数学专业的50名参加选修课与不参加选修课的学生的成绩,统计数据如下表:
| 成绩优秀
| 成绩不够优秀
| 总计
|
参加选修课
| 16
| 9
| 25
|
不参加选修课
| 8
| 17
| 25
|
总计
| 24
| 26
| 50
|
(1)试运用独立性检验的思想方法分析:你能否有99%的把握认为“学生的成绩优秀与是否参加选修课有关”,并说明理由;
(2)如果从数学专业随机抽取5名学生,求抽到参加选修课的学生人数

的分布列和数学期望(将频率当做概率计算).
参考公式:

,其中

.
临界值表:

| 0.15
| 0.10
| 0.05
| 0.025
| 0.010
| 0.005
| 0.001
|

| 2.072
| 2.706
| 3.841
| 5.024
| 6.635
| 7.879
| 10.828
|