刷题首页
题库
高中数学
题干
如图,F是椭圆
的左焦点,椭圆的离心率为
,B为椭圆的左顶点和上顶点,点C在x轴上,
,
的外接圆M恰好与直线
:
相切.
1
求椭圆的方程;
2
过点C的直线
与已知椭圆交于P,Q两点,且
,求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2015-07-01 06:35:04
答案(点此获取答案解析)
同类题1
已知椭圆
的右焦点为
,则
()
A.
B.
C.
D.
同类题2
设椭圆
的左、右焦点分别为
,
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
,过
,
三点的圆恰好与直线
相切.
求椭圆
的方程;
过右焦点
作斜率为
的直线
与椭圆
交于
两点,问在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形?如果存在,求出
的取值范围;如果不存在,说明理由.
同类题3
已知椭圆
的方程为
,双曲线
的左、右焦点分别是
的左、右顶点,而
的左、右顶点分别是
的左、右焦点.
(1)求双曲线
的方程;
(2)若直线
与双曲线C
2
恒有两个不同的交点A和B,求
的范围.
同类题4
椭圆
与
的中心在原点,焦点分别在
轴与
轴上,它们有相同的离心率
,并且
的短轴为
的长轴,
与
的四个焦点构成的四边形面积是
.
(1)求椭圆
与
的方程;
(2)设
是椭圆
上非顶点的动点,
与椭圆
长轴两个顶点
,
的连线
,
分别与椭圆
交于
,
点.
(i)求证:直线
,
斜率之积为常数;
(ii)直线
与直线
的斜率之积是否为常数?若是,求出该值;若不是,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆方程求a、b、c
讨论椭圆与直线的位置关系