刷题首页
题库
初中数学
题干
如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4
m
的半圆,其边缘AB=CD=20
m
,点E在CD上,CE=4
m
,一滑行爱好者从A点滑到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,
π
取3)
上一题
下一题
0.99难度 解答题 更新时间:2018-03-07 08:44:33
答案(点此获取答案解析)
同类题1
在Rt△
ABC
中,∠
C
=90°,
a
、
b
、
C
分别表示∠
A
、∠
B
、∠
C
的对边.
(1)如图1,已知:
a
=7,
c
=25,求
b
;
(2)如图2,已知:
c
=25,
a
:
b
=4:3,求
a
、
b
.
同类题2
一个三角形有两边长分别为15和20,第三边上的高为12,则第三边的长为______.
同类题3
若等腰△
ABC
的腰长
AB
=2,顶角∠
BAC
=120°,以
BC
为边的正方形面积为( )
A.3
B.12
C.
D.
同类题4
如图,
C
是
AB
的垂直平分线
EF
上一点,连接
CA
,
CB
.以
BC
为直角边作Rt△
BCD
,且
CB
=
CD
,
AD
交
EF
于点
H
,
BH
交
DC
于点
M
.
(1)求证:∠
HAC
=∠
HBC
=∠
HDC
;
(2)判断△
DHB
的形状,并证明你的结论;
(3)若
DH
=1,
AH
=7,则
BC
=
.
同类题5
某直角三角形的周长为30,且一条直角边长为5,则另一条直角边长为( )
A.3
B.4
C.12
D.13
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
用勾股定理解三角形