刷题首页
题库
初中数学
题干
在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.
特别地,当点P′与圆心C重合时,规定CP′=0.
(1)当⊙O的半径为1时.
①分别判断点M(2,1),N(
,0),T(1,
)关于⊙O的反称点是否存在?若存在,求其坐标;
②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=﹣
x+2
与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2015-07-09 05:55:22
答案(点此获取答案解析)
同类题1
如果一个三角形有一边上的中线与这边的长相等,那么称这个三角形为“和谐三角形”.
(1)请用直尺和圆规在图1中画一个以线段AB为一边的“和谐三角形”;
(2)如图2,在△ABC中,∠C=90°,AB=
,BC=
,请你判断△ABC是否是“和谐三角形”?证明你的结论;
(3)如图3,已知正方形ABCD的边长为1,动点M,N从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点M经过的路程为S,当△AMN为“和谐三角形”时,求S的值.
同类题2
(本题14分)如图1,在平面直角坐标系中,直线l的函数表达式是
.菱形ABCD
的对角线AC、BD在坐标轴上,点A、B的坐标分别是(0,4),(-6,0).P是折线B-A-D上的动点,
过点P作PQ∥y轴交折线B-C-D于点Q.作PG⊥l于点G,连结GQ.设直线l与x轴交于点E,点P的
横坐标为m,
(1)求菱形ABCD的面积;
(2)当点P在AD上运动时,
①求线段PQ的长(用关于m的代数式表示);
②若△PQG为等腰三角形,求m的值;
(3)如图2,连结QE,当点P在AB上运动时,过点Q作QH⊥l于H,若tan∠HQE=
,直接写出m的值.
同类题3
如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切,将这个游戏抽象为数学问题,如图②,已知铁环的半径为
,设铁环中心为
,铁环钩与铁环相切的点为
,铁环与地面接触点为
,
,且
,若人站立点
与点
的水平距离
等于
,则铁环钩
的长度为( )
.
A.
B.
C.
D.
同类题4
如图,在平面直角坐标系中,四边形
的顶点O为坐标原点,点C在x轴的正半轴上,且
于点
,点
的坐标为(2,2
),
=
,
60°,点
是线段
上一点,且
,连接
.
(1)求证:△AOD是等边三角形;
(2)求点
的坐标;
(3)平行于
的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形
截得的线段长为
,直线l与x轴交点的横坐标为t.
① 当直线l与x轴的交点在线段CD上(交点不与点C,D重合)时,请直接写出m与t的函数关系式(不必写出自变量t的取值范围).
② 若
,请直接写出此时
的值.
同类题5
问题发现
(1)如图①,Rt△ABC中,∠C=90°,AC=6,BC=8,点D是AB边上任意一点,则CD的最小值为
;
(2)如图②,矩形ABCD中,AB=6,BC=8,点M、点N分别在ED、BC上,求CM+MN的最小值;
(3)如图③.矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是EC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若在在,求这个最小值及此时BF的长度.若不存在,请说明理由.
相关知识点
图形的变化
锐角三角函数
解直角三角形及其应用
解直角三角形
解直角三角形