刷题首页
题库
高中数学
题干
已知数列
满足:
(其中常数
,
).
(1)求数列
的通项公式;
(2)当
时,若
(
,
),求
;
(3)设
为数列
的前
项和,若对任意
,是否存在
,使得不等式
成立,若存在,求实数
的取值范围;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-15 11:10:08
答案(点此获取答案解析)
同类题1
在数列
中,若
是正整数,且
,
,则称
为“
D
-数列”.
(1) 举出一个前五项均不为零的“
D
-数列”(只要求依次写出该数列的前五项);
(2) 若“
D
-数列”
中,
,
,数列
满足
,
,写出数列
的通项公式,并分别判断当
时,
与
的极限是否存在,如果存在,求出其极限值(若不存在不需要交代理由);
(3) 证明: 设“
D
-数列”
中的最大项为
,证明:
或
.
同类题2
数列
前
项和为
,已知
,且对任意正整数
、
,都有
,若
恒成立则实数
的最小值为()
A.
B.
C.
D.
同类题3
若数列
的通项公式
,前
n
项和为
,则下列结论中( )
A.
不存在
B.
C.
或
D.
同类题4
已知数列{
a
n
}的前
n
项和
S
n
=
n
2
+4
n
(
n
∈N
*
),数列{
b
n
}为等比数列,且首项
和公比
q
满足:
(
I
)求数列{
},{
}的通项公式;
(
II
)设
,记数列{
}的前
n
项和
,若不等式λ(
﹣2
n
)≤4
对任意
n
∈N
*
恒成立,求实数λ的最大值.
同类题5
计算:
______
相关知识点
数列
错位相减法求和