刷题首页
题库
高中数学
题干
我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(
gui
)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长).二十四个节气及晷长变化如图所示,相邻两个晷长的变化量相同,周而复始.若冬至晷长一丈四尺五寸,夏至晷长二尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的第三个节气(立秋)晷长是( )
A.五寸
B.二尺五寸
C.五尺五寸
D.四尺五寸
上一题
下一题
0.99难度 单选题 更新时间:2020-01-24 12:29:20
答案(点此获取答案解析)
同类题1
《莱茵德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把120个面包分给5个人,使每个人所得份量成等差数列,且较大的三份之和的七分之一是较小的两份之和,则最大一份的个数为( )
A.2
B.15
C.32
D.46
同类题2
某企业利用银行无息贷款,投资
万元引进一条高科技生产流水线,预计每年可获产品利润
万元.但还另需用于此流水线的保养、维修费用第一年
万元,以后每年递增
万元,问至少几年可收回该项投资?(即总利润不小于总支出)
同类题3
已知数列
中,
,前
项的和为
,且满足数列
是公差为1的等差数列.
(1)求数列
的通项公式;
(2)若数列
的前
项的和为
,且
恒成立,求
的最大值.
同类题4
《九章算术》是我国古代的数学巨著,内容极为丰富,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何”.意思是:“5人分取5钱,各人所得钱数依次成等差数列,其中前2人所得钱数之和与后3人所得钱数之和相等”,则其中分得的钱数最多的是( )
A.
钱
B.1钱
C.
钱
D.
钱
同类题5
设数列
的前
n
项和为
,
,且
,若
,则
n
的最大值为______.
相关知识点
数列
等差数列
等差数列通项公式的基本量计算