刷题首页
题库
高中数学
题干
已知
中,
,
为
内一点,且
.
(Ⅰ)当
时,求
的长;
(Ⅱ)若
,令
,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2018-09-08 11:12:07
答案(点此获取答案解析)
同类题1
凸四边形就是没有角度数大于
的四边形,把四边形任何一边向两方延长,其他各边都在延长所得直线的同一旁,这样的四边形叫做凸四边形,如图,在凸四边形
中,
,
,
,
,当
变化时,对角线
的最大值为( )
A.3
B.4
C.
D.
同类题2
如图,铁路线上
AC
段长99
km
,工厂
B
到铁路的距离
BC
为20
km
,现在要在
AC
上某一点
D
处,向
B
修一条公路,已知铁路每吨千米与公路每吨千米的运费之比为
λ
(0<
λ
<1),为了使从
A
到
B
的运费最省,
D
应选在离
C
距离多远处.
同类题3
某地棚户区改造建筑平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形
是原棚户区建筑用地,测量可知边界
万米,
万米,
万米.
(1)请计算原棚户区建筑用地
的面积及
的长;
(2)因地理条件的限制,边界
不能更改,而边界
可以调整,为了提高棚户区建筑用地的利用率,请在圆弧
上设计一点
,使得棚户区改造后的新建筑用地
的面积最大,并求出最大值.
同类题4
如图,在
中,点
在边
上,
,
,
.
(1)求
;
(2)若
的面积是
,求
.
同类题5
在平面四边形
中,
,则
_________
.
相关知识点
三角函数与解三角形
解三角形
解三角形的实际应用
正、余弦定理在几何中的应用
几何图形中的计算