刷题首页
题库
高中数学
题干
(1)已知
,
,求
的值;
(2)已知
均为锐角,且
,
,求
.
上一题
下一题
0.99难度 解答题 更新时间:2016-03-07 05:53:58
答案(点此获取答案解析)
同类题1
已知函数
,若存在
,使得
恒成立,则
=( )
A.
B.
C.
D.
同类题2
如图,港口
在港口
的正东120海里处,小岛
在港口
的北偏东
的方向,且在港口
北偏西
的方向上,一艘科学考察船从港口
出发,沿北偏东
的
方向以20海里/小时的速度驶离港口
.一艘给养快艇从港口
以60海里/小时的速度驶向小岛
,在
岛转运补给物资后以相同的航速送往科考船.已知两船同时出发,补给装船时间为1小时.
(1)求给养快艇从港口
到小岛
的航行时间;
(2)给养快艇驶离港口
后,最少经过多少小时能和科考船相遇?
同类题3
为了及时向群众宣传“十九大”党和国家“乡村振兴”战略,需要寻找一个宣讲站,让群众能在最短的时间内到宣讲站.设有三个乡镇,分别位于一个矩形
MNPQ
的两个顶点
M
、
N
及
P、Q
的中点
S
处,
,
,现要在该矩形的区域内(含边界),且与
M
、
N
等距离的一点
O
处设一个宣讲站,记
O
点到三个乡镇的距离之和为
.
(1)设
,将
表示为
的函数;
(2)试利用(1)的函数关系式确定宣讲站
O
的位置,使宣讲站
O
到三个乡镇的距离之和
最小.
同类题4
已知点
,动点
满足
,直线
交
轴于点
,则
的最大值为
.
同类题5
某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,
两点为喷泉,圆心
为
的中点,其中
米,半径
米,市民可位于水池边缘任意一点
处观赏.
(1)若当
时,
,求此时
的值;
(2)设
,且
.
(i)试将
表示为
的函数,并求出
的取值范围;
(ii)若同时要求市民在水池边缘任意一点
处观赏喷泉时,观赏角度
的最大值不小于
,试求
两处喷泉间距离的最小值.
相关知识点
三角函数与解三角形
三角函数
三角函数的应用