刷题首页
题库
初中数学
题干
观察下面一组数:﹣1,﹣2, 3,﹣4,﹣5,6,﹣7,…,将这组数排成如图的形式,按照如图规律排下去,则第________行从左边向右数第________个数是2019.
第一行 -1
第二行 -2 3 -4
第三行 -5 6 -7 -8 9
第四行 -10 -11 12 -13 -14 15 -16
……
上一题
下一题
0.99难度 填空题 更新时间:2020-01-04 02:13:33
答案(点此获取答案解析)
同类题1
一组数按一定规律排列的式子:
……,则第
个式子是__________(
为正整数)
同类题2
问题提出:巴什博弈(
BashGame
):有100个棋子,两个人轮流从这堆子中取棋子,规定每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
问题深究:我们研究数学问题时,我们经常采用将一般问题特殊化的策略,因此我们首先取几个特殊值试试.
探究(1):3个棋子,每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
若自己先拿一个棋子,对手拿两个从而获胜:若白己先拿两个祺了,对手拿一个从而获胜,所以3个棋子时,后拿可胜.
探究(2):4个棋子,每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
若自己先拿一个棋子,剩余三个棋子,对方拿一个,自己拿两个从而获胜;对方拿两个,自己拿一个从而获胜.所以4个棋子时,先手先拿1个棋子可获胜.
探究(3):5个棋子,每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
若自己先拿两个棋子,剩余三个棋子,对方拿一个,自己拿两个从而获胜;对方拿两个,自已拿一个从而获胜,所以5个棋子时,先手先拿2个棋子可获胜.
探究(4):6个棋子,每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
若对方先拿一个,再按探究(3)的拿法,自已可获胜;若对方先拿两个,再按照探究(2)的拿法,自己可获胜,所以6个棋子时,后拿可胜.
探究(5):7个棋子,每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
若自己先拿一个棋子,剩余六个棋子,若对方再拿一个自己再拿
个可获胜;若对方再拿两个,自己再拿
个可获胜,所以7个棋子时,先手先拿1个棋子可获胜.
……
探究总结:
(1)当总棋子个数
个时,后拿可胜;
(2)当总棋子个数
个时,先拿可胜.
问题解决:有100个棋子,两个人轮流从这堆棋子中取棋子,规定每人每次可拿1个或2个棋子,最后拿光者获胜.要想获胜是先拿还是后拿?若是先拿应怎样拿?
问题拓展:13个棋子,每人每次可拿一个,两个或三个棋子,最后拿光着获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
同类题3
一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的
A.31,63,64
B.31,32,33
C.31,62,63
D.31,45,46
同类题4
⑴ 探究发现
①
_________;
②
_________;
③
_________;
④ _________________;
… …
⑵ 规律提炼
写出第
n
个等式(用含有字母
的式子表示).
⑶ 问题解决
①
_______;
② 求
的值.
同类题5
在日历上我们可以发现其中某些数满足一定的规律.如图是2018年8月份的日历,我们任意选择其中所示的方框部分,将方框部分中的4个位置的数交叉相乘,再相减,如8×16-9×15=-7,19×27-20×26=-7,不难发现结果都是-7.
(1)请你再选择一组数按上面的方式计算,看看是否符合这个规律.并用你擅长的表达方式描述这个规律.
(2)请你利用整式的运算对以上的规律加以证明.
相关知识点
数与式
代数式
整式