刷题首页
题库
高中数学
题干
如图所示,有两条相交成60°角的直线
,交点为
.甲、乙分别在
上,起初甲离
点
,乙离
点
,后来甲沿
的方向,乙沿
的方向,同时以
的速度步行.求:
(1)起初两人的距离是多少?
(2)
后两人的距离是多少?
(3)什么时候两人的距离最短?
上一题
下一题
0.99难度 解答题 更新时间:2012-06-05 07:47:08
答案(点此获取答案解析)
同类题1
已知函数
的周期为
,图象的一个对称中心为
.将函数
图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移
个单位长度后得到函数
的图象.
(1)求函数
与
的解析式.
(2)定义:当函数取得最值时,函数图象上对应的点称为函数的最值点,如果函数
的图象上至少有一个最大值点和一个最小值点在圆
的内部或圆周上,求
k
的取值范围.
同类题2
已知函数
满足
,函数
图象上距
轴最近的最高点坐标为
,则下列说法正确的是( )
A.
为函数
图象的一条对称轴
B.
的最小正周期为
C.
为函数
图象的一个对称中心
D.
同类题3
已知函数
,将函数
的图象向右平移
个单位,再向下平移2个单位,得到函数
的图象.
求
的解析式;
求
在
上的单调递减区间及值域.
同类题4
函数
的最小正周期为
A.
B.
C.
D.
同类题5
若把函数
的图象关于点
对称,将其图象沿
轴向右平移
个单位后,得到函数
的图象,则
的最大值为( )
A.
B.
C.
D.
相关知识点
三角函数与解三角形
三角函数
三角函数的图象与性质