刷题首页
题库
高中数学
题干
工厂生产某种产品,次品率p与日产量x(万件)间的关系为:
(
c
为常数, 且0<
c
<6).已知每生产1件合格产品盈利3元,
每出现1件次品亏损1.5元.
(1)将日盈利额
y
(万元)表示为日产量
x
(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?
上一题
下一题
0.99难度 解答题 更新时间:2011-12-10 09:21:05
答案(点此获取答案解析)
同类题1
据测算:2011年,某企业如果不搞促销活动,那么某一种产品的销售量只能是1万件;如果搞促销活动,那么该产品销售量(亦即该产品的年产量)
m
万件与年促销费用
x
万元(
x
≥0)满足
(
k
为常数).已知2011年生产该产品的前期投入需要8万元,每生产1万件该产品需要再投入16万元,企业将每件该产品的销售价格定为每件产品年平均成本的1.5倍(定价不考虑促销成本).
(1)若2011年该产品的销售量不少于2万件,则该产品年促销费用最少是多少?
(2)试将2011年该产品的年利润
y
(万元)表示为年促销费用
x
(万元)的函数,并求2011年的最大利润.
同类题2
某环线地铁按内、外线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异),新调整的方案要求内环线列车平均速度为20千米/小时,外环线列车平均速度为30千米/小时,现内、外环线共有18列列车全部投入运行,其中内环投入
列列车.
(1)写出内、外环线乘客的最长候车时间(分钟)分别关于
的函数解析式;
(2)要使内、外环线乘客的最长候车时问之差距不超过1分钟,问内、外环线应各投入几列列车运行?
(3)要使内、外环线乘客的最长候车时间之和最小,问内、外环线应各投入几列列车运行?
同类题3
某市准备建一个如图所示的综合性休闲广场.已知矩形广场的总面积为2000平方米,其中阴影部分为通道,通道的宽为1米,中间的两个小矩形完全相同.
(1)用矩形的宽
(米)表示中间的三个矩形的总面积
(平方米)的函数关系式,并给出定义域;
(2)当矩形的宽为何值时,
取得最大值,并求出最大值.
同类题4
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y
1
与投资金额x的函数关系为y
1
=18-
,B产品的利润y
2
与投资金额x的函数关系为y
2
=
(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
同类题5
按照某学者的理论,假设一个人生产某产品单件成本为
元,如果他卖出该产品的单价为
元,则他的满意度为
;如果他买进该产品的单价为
元,则他的满意度为
.如果一个人对两种交易(卖出或买进)的满意度分别为
和
,则他对这两种交易的综合满意度为
.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为
元和
元,甲买进A与卖出B的综合满意度为
,乙卖出A与买进B的综合满意度为
(1)求
和
关于
、
的表达式;当
时,求证:
=
;
(2)设
,当
、
分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为
,试问能否适当选取
、
的值,使得
和
同时成立,但等号不同时成立?试说明理由。
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分式型函数模型的应用