题库 高中数学

题干

已知是满足下列性质的所有函数组成的集合:对任何(其中为函数的定义域),均有成立.
(1)已知函数,判断与集合的关系,并说明理由;
(2)是否存在实数,使得属于集合?若存在,求的取值范围,若不存在,请说明理由;
(3)对于实数,用表示集合中定义域为区间的函数的集合.
定义:已知是定义在上的函数,如果存在常数,对区间的任意划分:,和式恒成立,则称上的“绝对差有界函数”,其中常数称为的“绝对差上界”,的最小值称为的“绝对差上确界”,符号;求证:集合中的函数是“绝对差有界函数”,并求的“绝对差上确界”.
上一题 下一题 0.99难度 解答题 更新时间:2018-11-02 08:10:31

答案(点此获取答案解析)