刷题首页
题库
高中数学
题干
已知函数
是奇函数,且
.
(Ⅰ)求函数
的解析式;
(Ⅱ)用定义证明函数
在
上的单调性.
上一题
下一题
0.99难度 解答题 更新时间:2016-05-04 04:48:35
答案(点此获取答案解析)
同类题1
若存在不为零的常数
,使得函数
对定义域内的任一
均有
,则称函数
为周期函数,其中常数
就是函数的一个周期.
(1)证明:若存在不为零的常数
使得函数
对定义域内的任一
均有
,则此函数是周期函数.
(2)若定义在
上的奇函数
满足
,试探究此函数在区间
内零点的最少个数.
同类题2
设
f
(
x
)是定义在
R
上的奇函数,若当
x
>0时,有
f
(
x
)=
lg
(
x
+4),则
f
(0)=_____.当
x
<0时,
f
(
x
)=__________.
同类题3
对于函数
,有如下三个命题:
①
是偶函数;
②
在区间
上是减函数,在区间
上是增函数;
③
在区间
上是增函数.
其中正确的命题的序号是( ).
A.①②
B.①③
C.②③
D.①②③
同类题4
已知函数
为奇函数,
为偶函数,且
,则
( )
A.2
B.0
C.4
D.-4
同类题5
设偶函数
和奇函数
的图象如图所示,集合A
与集合B
的元素个数分别为a,b,若
,则a+b的值
不
可能是( )
A.12
B.13
C.14
D.15
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的奇偶性