刷题首页
题库
高中数学
题干
定义域为
的可导函数
的导函数为
,满足
,且
,则不等式
的解集为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-07-05 11:29:24
答案(点此获取答案解析)
同类题1
若函数
与
在区间
上都是减函数, 则实数
的取值范围是______.
同类题2
若定义在
上的函数
满足:对任意的
,当
时,都有
,则称
是“非減函数”.
(1)若
是“非減函数”,求
的取值范围;
(2)若
为周期函数,且为“非减函数”,证明
是常值函数;
(3)设
恒大于零,
是定义在R上、恒大于零的周期函数,
是
的最大值。函数
。证明:“
是周期函数”的充要条件“
是常值函数”.
同类题3
已知
是
上的奇函数.
(1)求
.
(2)判断
的单调性(不要求证明),并求
的值域.
(3)设关于
的函数
有两个零点,求实数
的取值范围.
同类题4
已知二次函数
(
).
(1)若
为偶函数,求
的值;
(2)若
的解集为
,求
a
,
b
的值;
(3)若
在区间
上单调递增,求
a
的取值范围.
同类题5
已知
,则不等式f(x-2)+f(x
2
-4)<0的解集为( )
A.
B.
C.
D.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
函数单调性的应用
用导数判断或证明已知函数的单调性