刷题首页
题库
高中数学
题干
学校欲在甲、乙两店采购某款投影仪,该投影仪原价为每台2000元,甲店用如下方法促销:买一台单价为1950元,买二台单价为1900元,每多买一台,则所买各台单价均再减50元,但最低不能低于1200元;乙店一律按原售价的80%促销,学校需要购买
台投影仪,若在甲店购买费用为
元,若在乙店购买费用记为
.
(1)分别求出
和
的解析式;
(2)当购买
台时,在哪家店买更省钱?
上一题
下一题
0.99难度 解答题 更新时间:2019-12-30 03:28:01
答案(点此获取答案解析)
同类题1
在某单位的职工食堂中,食堂每天以
元/个的价格从面包店购进面包,然后以
元/个的价格出售.如果当天卖不完,剩下的面包以
元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以
(单位:个,
)表示面包的需求量,
(单位:元)表示利润.
(1)求
关于
的函数解析式;
(2)根据直方图估计利润
不少于
元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量
,则取
,且
的概率等于需求量落入
的频率),求
的分布列和数学期望.
同类题2
某厂生产某种产品x(百台),总成本为C(x)(万元),其中固定成本为2万元,每生产1百台,成本增加1万元,销售收入
(万元),假定该产品产销平衡.
(1)若要该厂不亏本,产量x应控制在什么范围内?
(2)该厂年产多少台时,可使利润最大?
(3)求该厂利润最大时产品的售价.
同类题3
某商品在近30天内每件的销售价格P元和时间t(t∈N)的关系如图所示.
(1)请确定销售价格P(元)和时间t(天)的函数解析式;
(2)该商品的日销售量Q(件)与时间t(天)的关系是:Q=﹣t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)求该商品的日销售金额y(元)的最大值,并指出日销售金额最大的一天是30天中的哪一天?
同类题4
某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过
吨时,按每吨
元收取;当该用户用水量超过
吨时,超出部分按每吨
元收取.
(1)记某用户在一个收费周期的用水量为
吨,所缴水费为
元,写出
关于
的函数解析式.
(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为
元,且甲、乙两用户用水量之比为
,试求出甲、乙两用户在该收费周期内各自的用水量和水费.
同类题5
由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱,1个单位的固体碱在水中逐步溶化,水中的碱浓度
与时间
的关系,可近似地表示为
,只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分段函数模型的应用
建立拟合函数模型解决实际问题