设a,b,c,d不全为0,给定函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.若f(x),g(x)满足①f(x)有零点;②f(x)的零点均为g(f(x))的零点;③g(f(x))的零点均为f(x)的零点.则称f(x),g(x)为一对“K函数”.
(1)当a=c=d=1,b=0时,验证f(x),g(x)是否为一对“K函数”,并说明理由;
(2)若f(x),g(x)为任意一对“K函数”,求d的值;
(3)若a=1,f(1)=0,且f(x),g(x)为一对“K函数”,求c的取值范围.