学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()


A.0.3 | B.0.25 | C.0.15 | D.0.1 |
甲、乙两位同学参加奥赛班11次测验成绩分布如图所示:(单位:分)

(1)他们的平均成绩分别是多少?
(2)他们测验成绩的方差、极差是多少?
(3)现要从中选出一人参加比赛,历届比赛表明,成绩达到98分以上才可进入决赛,你认为应选谁参加这次比赛,为什么?
(4)分析两位同学的成绩各有何特点?并对两位同学各提一条学习建议.

(1)他们的平均成绩分别是多少?
(2)他们测验成绩的方差、极差是多少?
(3)现要从中选出一人参加比赛,历届比赛表明,成绩达到98分以上才可进入决赛,你认为应选谁参加这次比赛,为什么?
(4)分析两位同学的成绩各有何特点?并对两位同学各提一条学习建议.
小华初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,她通过采集数据后,绘制了两幅不完整的统计图.请你根据图中提供的信息,解答下列问题:


(1)求出该班的总人数;
(2)通过计算请把图(1)统计图补充完整;
(3)如果小华所在年级共有600名学生,请你估计该年级报考普高的学生有多少人.


(1)求出该班的总人数;
(2)通过计算请把图(1)统计图补充完整;
(3)如果小华所在年级共有600名学生,请你估计该年级报考普高的学生有多少人.
某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).

小宇的作业:
解:
甲=
(9+4+7+4+6)=6,
s甲2=
[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
=
(9+4+1+4+0)
=3.6
小宇的作业:
解:
甲=
(9+4+7+4+6)=6,
s甲2=
[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
=
(9+4+1+4+0)
=3.6
甲、乙两人射箭成绩统计表
(1)a=________,
乙=________;
(2)请完成图中表示乙成绩变化情况的折线;
(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.
②请你从平均数和方差的角度分析,谁将被选中.

小宇的作业:
解:


s甲2=

=

=3.6
小宇的作业:
解:


s甲2=

=

=3.6
甲、乙两人射箭成绩统计表
| 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
甲成绩 | 9 | 4 | 7 | 4 | 6 |
乙成绩 | 7 | 5 | 7 | a | 7 |
(1)a=________,

(2)请完成图中表示乙成绩变化情况的折线;
(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.
②请你从平均数和方差的角度分析,谁将被选中.
某中学七年级(1)班50名同学在第一单元数学测验中成绩统计如下表所示:
请根据上述信息,绘制相应的频数直方图.
学生成绩 | 50-59 | 60-69 | 70-79 | 80-89 | 90-100 |
学生人数 | 5 | 5 | 15 | 20 | 25 |
请根据上述信息,绘制相应的频数直方图.
在某中学举行的电脑知识竞赛中,将参赛学生的成绩(得分均为整数)进行整理后分成五组,绘制出频数分布直方图,已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.

(1)求第二小组的频率,并补全这个频数分布直方图;
(2)求参赛的学生的优秀率(成绩≥80为优秀)和及格率(成绩≥60为及格);
(3)参赛学生成绩的中位数应落在第几小组内?(不必说明理由)
(4)请你评价一下这次竞赛的成绩.

(1)求第二小组的频率,并补全这个频数分布直方图;
(2)求参赛的学生的优秀率(成绩≥80为优秀)和及格率(成绩≥60为及格);
(3)参赛学生成绩的中位数应落在第几小组内?(不必说明理由)
(4)请你评价一下这次竞赛的成绩.
某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款人数的比为1∶5.
捐款人数分组统计表


请结合以上信息解答下列问题.
(1)a=________,本次调查样本的容量是________;
(2)先求出C组的人数,再补全“捐款人数分组统计图1”;
(3)若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?
捐款人数分组统计表
组别 | 捐款额x/元 | 人数 |
A | 1≤x<10 | a |
B | 10≤x<20 | 100 |
C | 20≤x<30 | |
D | 30≤x<40 | |
E | x≥40 | |


请结合以上信息解答下列问题.
(1)a=________,本次调查样本的容量是________;
(2)先求出C组的人数,再补全“捐款人数分组统计图1”;
(3)若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?