- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 平移
- 轴对称
- 旋转
- + 中心对称
- 中心对称
- 中心对称图形
- 关于原点对称的点的坐标
- 图形的变换
- 图案设计
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
下列图形中,绕某个点旋转180°能与自身重合的图形有( )
(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.
(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.
A.2个 | B.3个 | C.4个 | D.5个 |
在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为( )
A.(﹣4,﹣3) | B.(4,3) | C.(4,﹣3) | D.(﹣4,3) |
如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出点C2的坐标;
(3)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出点C2的坐标;
(3)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.
