- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- + 图形的平移、对称与旋转
- 平移
- 轴对称
- 旋转
- 中心对称
- 图案设计
- 图形的相似
- 锐角三角函数
- 投影与视图
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,方格纸中的每个小正方形的边长都为1,在建立平面直角坐标系后,△ABC的顶点均在格点上.
(1)以点A为旋转中心,将△ABC绕点A逆时针旋转90°得到△AB1C1,画出△AB1C1.
(2)画出△ABC关于原点O成中心对称的△A2B2C2,若点C的坐标为(﹣4,﹣1),则点C2的坐标为 .
(1)以点A为旋转中心,将△ABC绕点A逆时针旋转90°得到△AB1C1,画出△AB1C1.
(2)画出△ABC关于原点O成中心对称的△A2B2C2,若点C的坐标为(﹣4,﹣1),则点C2的坐标为 .

如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).
(1)先将△ABC向左平移5个单位长度,再向下平移1个单位长度得到△A1B1C1,试在图中画出△A1B1C1,并写出点A1的坐标;
(2)画出△ABC关于原点对称的△A1B1C1,并写出C1的坐标。
(1)先将△ABC向左平移5个单位长度,再向下平移1个单位长度得到△A1B1C1,试在图中画出△A1B1C1,并写出点A1的坐标;
(2)画出△ABC关于原点对称的△A1B1C1,并写出C1的坐标。

在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是( )
A.![]() | B.![]() | C.![]() | D.![]() |