- 数与式
- 方程与不等式
- 一元二次方程的应用——传播问题
- + 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某商场今年二月份的营业额是 1000 万元,三月份由于经营不善,其营业额比二月份下降 10%,后来通过加强管理,五月份的营业额达到了 1296 万元,求三月份到五月份营业额的平均增长率.
李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份的盈利达到3456元,且从2月到4月,每月盈利的平均增长率都相同.
(1)求每月盈利的平均增长率;
(2)按照这个平均增长率,预计5月份这家商店的盈利将达到多少元?
(1)求每月盈利的平均增长率;
(2)按照这个平均增长率,预计5月份这家商店的盈利将达到多少元?
某市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从10万元增加到70万元.设这两年的销售额的年平均增长率为
,根据题意可列方程为( )

A.![]() | B.![]() |
C.![]() | D.![]() |
开州区城区2018年底已有绿化面积700公顷,响应“青山绿水就是金山银山”的号召,绿化面积逐年增加,预计到2020年底绿化面积增加到1000公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是( )
A.700(1+x)=1000 | B.700(1+x)2=1000 |
C.700(1+2x)=1000 | D.1000(1-x)2=700 |
为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是( )
A.2500(1+2x)=12000 | B.2500+2500(1+x)+2500(1+2x)=12000 |
C.2500(1+x)2=1200 | D.2500+2500(1+x)+2500(1+x)2=12000 |
某厂一月份生产某机器200台,计划二、三月份共生产1800台. 设二、三月份每月的平均增长率为
,根据题意列出的方程是____________.

现代互联网技术的广泛应用,加速了快递行业的发展,据调查,某家小型快递公司,今年3月与5月完成投递的快件总数分别为10万件和14.4万件,现假定该公司每月投递的快件总数的增长率相同.
(1)求该快递公司投递快件总数的月平均增长率?
(2)如果该公司平均每名快件投递业务员每月最多可投递快件0.6万件,那么该公司现有的21名快件投递业务员能否完成今年6月的快件投递任务?如果不能,请问至少需要增加几名业务员?
(1)求该快递公司投递快件总数的月平均增长率?
(2)如果该公司平均每名快件投递业务员每月最多可投递快件0.6万件,那么该公司现有的21名快件投递业务员能否完成今年6月的快件投递任务?如果不能,请问至少需要增加几名业务员?
某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是( )
A.1000(1+x)2=3990 |
B.1000+1000(1+x)+1000(1+x)2=3990 |
C.1000(1+2x)=3990 |
D.1000+1000(1+x)+1000(1+2x)=3990 |
某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的年平均增长率是x,则所列方程正确的是( )
A.![]() | B.![]() |
C.![]() | D.![]() |