- 数与式
- 方程与不等式
- 二元一次方程(组)的相关概念
- 解二元一次方程组
- 同解方程组
- + 三元一次方程组
- 解三元一次方程组
- 三元一次方程组的应用
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
学校准备用9万元购进50台电视机,为了节省费用,学校打算以出厂价从厂家直接采购,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若学校同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下学校的采购方案;
(2)若学校去商场购买,在出厂价相同的情况下,商场销售一台甲种电视机获利150元,销售一台乙种电视机获利200元,销售一台丙种电视机获利250元,在(1)的条件下,学校选择哪种方案省下的钱最多?
(3)若学校准备用9万元同时购进三种不同的电视机50台,请你设计进货方案(直接写出方案)
(1)若学校同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下学校的采购方案;
(2)若学校去商场购买,在出厂价相同的情况下,商场销售一台甲种电视机获利150元,销售一台乙种电视机获利200元,销售一台丙种电视机获利250元,在(1)的条件下,学校选择哪种方案省下的钱最多?
(3)若学校准备用9万元同时购进三种不同的电视机50台,请你设计进货方案(直接写出方案)
购买甲、乙、丙三种不同品种的练习本各四次,其中,有一次购买时,三种练习本同时打折,四次购买的数量和费用如下表:
(1)第______次购物时打折;练习本甲的标价是_____元/本,练习本乙的标价是______元/本,练习本丙的标价是______元/本;
(2)如果三种练习本的折扣相同,请问折扣是打几折?
(3)现有资金100.5元,全部用于购买练习本,计划以标价购进练习本36本,如果购买其中两种练习本,请你直接写出一种购买方案,不需说明理由.
购买次数 | 购买各种练习本的数量(单位:本) | 购买总费用(单位:元) | ||
甲 | 乙 | 丙 | ||
第一次 | 2 | 3 | 0 | 24 |
第二次 | 4 | 9 | 6 | 75 |
第三次 | 10 | 3 | 0 | 72 |
第四次 | 10 | 10 | 4 | 88 |
(1)第______次购物时打折;练习本甲的标价是_____元/本,练习本乙的标价是______元/本,练习本丙的标价是______元/本;
(2)如果三种练习本的折扣相同,请问折扣是打几折?
(3)现有资金100.5元,全部用于购买练习本,计划以标价购进练习本36本,如果购买其中两种练习本,请你直接写出一种购买方案,不需说明理由.
綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.
为了践行“金山银山,不如绿水青山”的环保理念,重外环保小组的孩子们参与社区公益活动——收集废旧电池,活动开展一个月后,经过统计发现,全组成员平均每人收集了
颗废旧电池,其中,收集数量低于
颗的同学平均每人收集了
颗,收集数量不低于
颗的同学平均每人收集了
颗,数学王老师发现,若每人再多收集
颗,则收集数量低于
颗的同学平均每人收集了
颗,收集数量不低于
颗的同学平均每人收集了
颗,并且,该环保小组的人数介于
至
人.则该环保小组有__________人.











