- 数与式
- 方程与不等式
- 解一元一次方程(一)——合并同类项与移项
- + 解一元一次方程(二)——去括号
- 解一元一次方程(三)——去分母
- 解一元一次方程——拓展
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:有理数a、b、c在数轴上的位置如图所示,且|c|>|a|.

(1)若|a+10|=20,b2=400,c的相反数是30,求a、b、c的值;
(2)在(1)的条件下,a、b、c分别是A、B、C点在数轴上所对应的数,
①线段AC的长是________,将数轴折叠使得点A和点C重合,则折痕处在数轴上表示的数是__________
②数轴上是否存在一点P,使得P点到C点的距离加上P点到A点的距离减去P点到B点的距离为50,即PC+PA−PB=50?若存在,求出P点在数轴上所对应的数;若不存在,请说明理由;
③点C,B分别以4个单位/秒和3个单位/秒的速度同时向右运动,点A以7个单位/秒的速度向右运动,是否存在常数m,使得3CA+2mOB-mOA为定值,若存在,请求出m值以及这个定值;若不存在,请说明理由.

(1)若|a+10|=20,b2=400,c的相反数是30,求a、b、c的值;
(2)在(1)的条件下,a、b、c分别是A、B、C点在数轴上所对应的数,
①线段AC的长是________,将数轴折叠使得点A和点C重合,则折痕处在数轴上表示的数是__________
②数轴上是否存在一点P,使得P点到C点的距离加上P点到A点的距离减去P点到B点的距离为50,即PC+PA−PB=50?若存在,求出P点在数轴上所对应的数;若不存在,请说明理由;
③点C,B分别以4个单位/秒和3个单位/秒的速度同时向右运动,点A以7个单位/秒的速度向右运动,是否存在常数m,使得3CA+2mOB-mOA为定值,若存在,请求出m值以及这个定值;若不存在,请说明理由.
定义☆运算
观察下列运算:
(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,
(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,
0☆(﹣15)=+15(+13)☆0=+13.
(1)请你认真思考上述运算,归纳☆运算的法则:
两数进行☆运算时,同号_____,异号______.
特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.
(2)计算:(+11)☆[0☆(﹣12)]=_____.
(3)若2×(2☆a)﹣1=3a,求a的值.
观察下列运算:
(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,
(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,
0☆(﹣15)=+15(+13)☆0=+13.
(1)请你认真思考上述运算,归纳☆运算的法则:
两数进行☆运算时,同号_____,异号______.
特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.
(2)计算:(+11)☆[0☆(﹣12)]=_____.
(3)若2×(2☆a)﹣1=3a,求a的值.